
1 CSE 5526: Review 2

CSE 5526: Introduction to Neural Networks

Second Half Review

2 CSE 5526: Review 2

Main topics covered in first half of class

• McCulloch-Pitts neurons
• Designing networks by hand
• Training using the perceptron algorithm

• Linear regression
• Closed-form solution
• Training using gradient descent

• Multi-layer perceptrons
• Backpropagation training algorithm
• Generalization, over-fitting, under-fitting, learning curves

• Radial basis function networks

3 CSE 5526: Review 2

Main topics covered in second half of class

• Support vector machines
• Lagrange multipliers
• Maximum margin formulation, primal and dual
• Kernels
• Training SVMs on non-separable data (slack variables)

• Unsupervised learning
• Self-organizing maps
• Hopfield networks
• (Restricted) Boltzmann machines
• Deep belief networks and deep neural networks

4 CSE 5526: Review 2

CSE 5526: Introduction to Neural Networks

Support Vector Machines
(SVM)

5 CSE 5526: Review 2

Perceptrons find any separating hyperplane
Depends on initialization and ordering of training points

6 CSE 5526: Review 2

Perceptrons find any separating hyperplane
Depends on initialization and ordering of training points

7 CSE 5526: Review 2

Perceptrons find any separating hyperplane
Depends on initialization and ordering of training points

8 CSE 5526: Review 2

Perceptrons find any separating hyperplane
Depends on initialization and ordering of training points

9 CSE 5526: Review 2

But the maximum margin hyperplane
generalizes the best to new data

Margin

According to computational/statistical learning theory

10 CSE 5526: Review 2

The maximum margin only depends
on certain points, the support vectors

Margin

11 CSE 5526: Review 2

The maximum margin only depends
on certain points, the support vectors

Margin

12 CSE 5526: Review 2

The maximum margin only depends
on certain points, the support vectors

Margin

13 CSE 5526: Review 2

𝒘𝒘 is perpendicular to the hyperplane,
𝑏𝑏 defines its distance from the origin

14 CSE 5526: Review 2

The distance from point 𝒙𝒙
to the hyperplane is 𝑦𝑦(𝒙𝒙)/ 𝒘𝒘

15 CSE 5526: Review 2

The maximum margin hyperplane
is farthest from all of the data points

min𝑝𝑝𝑑𝑑𝑝𝑝𝑦𝑦(𝒙𝒙𝑝𝑝)/ 𝒘𝒘

16 CSE 5526: Review 2

Maximum margin
constrained optimization problem

• Which is equivalent to

argmin𝒘𝒘,𝑏𝑏
1
2

𝒘𝒘 2 subject to 𝑑𝑑𝑝𝑝 𝒘𝒘𝑇𝑇𝒙𝒙𝑝𝑝 + 𝑏𝑏 ≥ 1

• This is a well studied type of problem
• A quadratic program with linear inequality constraints

17 CSE 5526: Review 2

Detour: Lagrange multipliers
solve constrained optimization problems

• Want to maximize a function 𝑓𝑓 𝑥𝑥1, 𝑥𝑥2
• Subject to the equality constraint 𝑔𝑔 𝑥𝑥1, 𝑥𝑥2 = 0
• Could solve 𝑔𝑔 𝑥𝑥1, 𝑥𝑥2 = 0 for 𝑥𝑥1 in terms of 𝑥𝑥2

• But that is hard to do in general (i.e., on computers)
• Or could use Lagrange multipliers

• Which are easier to use in general (i.e., on computers)

18 CSE 5526: Review 2

Lagrange multipliers with general 𝒙𝒙

• In general, we can write
max𝒙𝒙𝑓𝑓 𝒙𝒙 subject to 𝑔𝑔 𝒙𝒙 = 0

• Constraint 𝑔𝑔 𝒙𝒙 = 0 defines a 𝐷𝐷 − 1 dimensional
surface for 𝐷𝐷 dimensional 𝒙𝒙

19 CSE 5526: Review 2

Gradients of 𝑔𝑔 and 𝑓𝑓
are orthogonal to surface at solution point

20 CSE 5526: Review 2

Gradients of 𝑔𝑔 and 𝑓𝑓 are orthogonal to surface
at maximum of 𝑓𝑓

• For 𝑔𝑔 because for all points on the surface 𝑔𝑔 𝒙𝒙 = 0
• Meaning that the directional derivative along it is 0
• So the gradient must be perpendicular to it

• For 𝑓𝑓 because if it wasn’t, you could move along
the surface in the direction of the gradient to find a
better maximum of 𝑓𝑓

• Thus 𝛻𝛻𝛻𝛻 and 𝛻𝛻𝑔𝑔 are (anti-)parallel
• And there must exist a scalar 𝜆𝜆 such that

𝛻𝛻𝛻𝛻 + 𝜆𝜆𝜆𝜆𝜆𝜆 = 0

21 CSE 5526: Review 2

The Lagrangian function captures the
constraints on 𝑥𝑥 and on the gradients

𝐿𝐿 𝒙𝒙, 𝜆𝜆 = 𝑓𝑓 𝒙𝒙 + 𝜆𝜆𝜆𝜆 𝒙𝒙
• Setting gradient of 𝐿𝐿 with respect to 𝒙𝒙 to 0 gives

𝛻𝛻𝑓𝑓 + 𝜆𝜆𝛻𝛻𝑔𝑔 = 0
• Setting partial of 𝐿𝐿 with respect to 𝜆𝜆 to 0 gives

𝑔𝑔 𝒙𝒙 = 0
• Thus stationary points of 𝐿𝐿 solve the constrained

optimization problem

22 CSE 5526: Review 2

Lagrange multipliers can also be used
with inequality constraints 𝑔𝑔 𝒙𝒙 ≥ 0

23 CSE 5526: Review 2

Back to SVMs: Maximum margin solution
is a fixed point of the Lagrangian function

• Recall, the maximum margin hyperplane is

argmin𝒘𝒘,𝑏𝑏
1
2

𝒘𝒘 2 subject to 𝑑𝑑𝑝𝑝 𝒘𝒘𝑇𝑇𝒙𝒙𝑝𝑝 + 𝑏𝑏 ≥ 1

• Minimization of a quadratic function subject to multiple
linear inequality constraints

• Will use Lagrange multipliers, 𝑎𝑎𝑝𝑝, to write
Lagrangian function

𝐿𝐿 𝒘𝒘, 𝑏𝑏, 𝒂𝒂 =
1
2

𝒘𝒘 2 −�𝑎𝑎𝑝𝑝(𝑑𝑑𝑝𝑝 𝒘𝒘𝑇𝑇𝒙𝒙𝑝𝑝 + 𝑏𝑏 − 1)
𝑝𝑝

• Note that 𝒙𝒙𝑝𝑝 and 𝑑𝑑𝑝𝑝 are fixed for the optimization

24 CSE 5526: Review 2

Dual form of Lagrangian eliminates 𝒘𝒘 and 𝑏𝑏

• Dual form of Lagrangian, maximize:

𝐿𝐿� 𝒂𝒂 = −
1
2
��𝑎𝑎𝑝𝑝𝑎𝑎𝑞𝑞

𝑞𝑞

𝑑𝑑𝑝𝑝𝑑𝑑𝑞𝑞𝒙𝒙𝑝𝑝𝑇𝑇𝒙𝒙𝑞𝑞
𝑝𝑝

+ �𝑎𝑎𝑝𝑝
𝑝𝑝

• Subject to the constraints

𝑎𝑎𝑝𝑝 ≥ 0 ∀𝑝𝑝 �𝑎𝑎𝑝𝑝𝑑𝑑𝑝𝑝 = 0
𝑝𝑝

• Another quadratic programming problem subject to
linear inequality and equality constraints

25 CSE 5526: Review 2

Classify new points using 𝑦𝑦(𝒙𝒙)

• Actual prediction function is still
𝑦𝑦 𝒙𝒙 = 𝒘𝒘𝑇𝑇𝒙𝒙 + 𝑏𝑏

• Get 𝒘𝒘 from primal Lagrangian

𝒘𝒘 = �𝑎𝑎𝑝𝑝𝑑𝑑𝑝𝑝𝒙𝒙𝑝𝑝
𝑝𝑝

• Will discuss 𝑏𝑏 shortly, so

𝑦𝑦 𝒙𝒙 = �𝑎𝑎𝑝𝑝𝑑𝑑𝑝𝑝𝒙𝒙𝑝𝑝𝑇𝑇𝒙𝒙
𝑝𝑝

+ 𝑏𝑏

26 CSE 5526: Review 2

Classify new points using 𝑦𝑦(𝒙𝒙), with kernel

• With a kernel, 𝒘𝒘𝑇𝑇 = ∑ 𝑎𝑎𝑝𝑝𝑑𝑑𝑝𝑝𝜙𝜙 𝒙𝒙𝑝𝑝𝑝𝑝
• Actual prediction function is

𝑦𝑦 𝒙𝒙 = 𝒘𝒘𝑇𝑇𝜙𝜙 𝒙𝒙 + 𝑏𝑏

= �𝑎𝑎𝑝𝑝𝑑𝑑𝑝𝑝𝜙𝜙𝑇𝑇 𝒙𝒙𝑝𝑝 𝜙𝜙 𝒙𝒙
𝑝𝑝

+ 𝑏𝑏

= �𝑎𝑎𝑝𝑝𝑑𝑑𝑝𝑝𝑘𝑘(𝒙𝒙𝑝𝑝, 𝒙𝒙)
𝑝𝑝

+ 𝑏𝑏

• In practice, save all 𝒙𝒙𝑝𝑝 with 𝑎𝑎𝑝𝑝 > 0
• And compute 𝑘𝑘(𝒙𝒙𝑝𝑝, 𝒙𝒙) at test time

27 CSE 5526: Review 2

Summary so far

• Finding the maximum margin hyperplane has been
formulated as a constrained quadratic program
• Convex problem, well studied, easy conceptually to solve

• Can be solved in the primal or dual formulation
• Dual formulation permits the use of kernel functions

• Only some data points contribute to the solution
• The support vectors

• So far, only applies to linearly separable data

28 CSE 5526: Review 2

Kernels are generalizations of inner products

• A kernel is a function of two data points such that
𝑘𝑘 𝑥𝑥, 𝑥𝑥′ = 𝜙𝜙𝑇𝑇 𝑥𝑥 𝜙𝜙(𝑥𝑥′)

 For some function 𝜙𝜙 𝑥𝑥
• It is therefore symmetric: 𝑘𝑘 𝑥𝑥, 𝑥𝑥′ = 𝑘𝑘 𝑥𝑥′, 𝑥𝑥
• Can compute 𝑘𝑘 𝑥𝑥, 𝑥𝑥′ from an explicit 𝜙𝜙 𝑥𝑥
• Or prove that 𝑘𝑘 𝑥𝑥, 𝑥𝑥′ corresponds to some 𝜙𝜙 𝑥𝑥

• Never need to actually compute 𝜙𝜙 𝑥𝑥

29 CSE 5526: Review 2

Kernelized SVM looks a lot like an RBF net

30 CSE 5526: Review 2

Kernel matrix

• The matrix

𝐊𝐊 =

𝑘𝑘(𝐱𝐱1, 𝐱𝐱1)

⋯
⋮

𝑘𝑘(𝐱𝐱1, 𝐱𝐱𝑁𝑁)

… 𝑘𝑘(𝐱𝐱𝑖𝑖, 𝐱𝐱𝑗𝑗) …

𝑘𝑘(𝐱𝐱𝑁𝑁, 𝐱𝐱1)
⋮
…

𝑘𝑘(𝐱𝐱𝑁𝑁, 𝐱𝐱𝑁𝑁)

 is called the kernel matrix, or the Gram matrix.
• K is positive semidefinite

31 CSE 5526: Review 2

Mercer’s theorem relates kernel functions
and inner product spaces

• Suppose that for all finite sets of points 𝒙𝒙𝑝𝑝 𝑝𝑝=1
𝑁𝑁

 and
real numbers 𝒂𝒂 𝑝𝑝=1

∞

�𝑎𝑎𝑗𝑗𝑎𝑎𝑖𝑖𝑘𝑘 𝒙𝒙𝑖𝑖, 𝒙𝒙𝑗𝑗
𝑖𝑖,𝑗𝑗

≥ 0

• Then 𝑲𝑲 is called a positive semidefinite kernel
• And can be written as

𝑘𝑘 𝒙𝒙, 𝒙𝒙′ = 𝜙𝜙𝑇𝑇 𝒙𝒙 𝜙𝜙(𝒙𝒙′)
• For some vector-valued function 𝜙𝜙 𝒙𝒙

32 CSE 5526: Review 2

Some popular kernels

• Polynomial kernel, parameters 𝑐𝑐 and 𝑝𝑝
𝑘𝑘 𝒙𝒙, 𝒙𝒙′ = 𝒙𝒙𝑇𝑇𝒙𝒙′ + 𝑐𝑐 𝑝𝑝

• Finite-dimensional 𝜙𝜙(𝒙𝒙) can be explicitly computed

• Gaussian or RBF kernel, parameter 𝜎𝜎

𝑘𝑘 𝒙𝒙, 𝒙𝒙′ = exp −
1
2𝜎𝜎

𝒙𝒙 − 𝒙𝒙′ 2

• Infinite-dimensional 𝜙𝜙(𝒙𝒙)
• Equivalent to RBF network, but more principled way of

finding centers

33 CSE 5526: Review 2

Some popular kernels

• Hypebolic tangent kernel, parameters 𝛽𝛽1 and 𝛽𝛽2
𝑘𝑘 𝒙𝒙, 𝒙𝒙′ = tanh 𝛽𝛽1𝒙𝒙𝑇𝑇𝒙𝒙′ + 𝛽𝛽2

• Only positive semidefinite for some values of 𝛽𝛽1 and 𝛽𝛽2
• Inspired by neural networks, but more principled way of

selecting number of hidden units

• String kernels or other structure kernels
• Can prove that they are positive definite
• Computed between non-numeric items
• Avoid converting to fixed-length feature vectors

34 CSE 5526: Review 2

Example: polynomial kernel

• Polynomial kernel in 2D, 𝑐𝑐 = 1, 𝑝𝑝 = 2
𝑘𝑘 𝒙𝒙, 𝒙𝒙′ = 𝒙𝒙𝑇𝑇𝒙𝒙′ + 1 2 = 𝑥𝑥1𝑥𝑥1′ + 𝑥𝑥2𝑥𝑥2′ + 1 2

= 𝑥𝑥12𝑥𝑥1′
2 + 𝑥𝑥22𝑥𝑥2′

2 + 2𝑥𝑥1𝑥𝑥1′𝑥𝑥2𝑥𝑥2′ + 2𝑥𝑥1𝑥𝑥1′ + 2𝑥𝑥2𝑥𝑥2′ + 1
• If we define

𝜙𝜙 𝒙𝒙 = 𝑥𝑥12, 𝑥𝑥22, 2x1x2, 2x1, 2x2, 1
𝑇𝑇

• Then 𝑘𝑘 𝒙𝒙, 𝒙𝒙′ = 𝜙𝜙𝑇𝑇 𝒙𝒙 𝜙𝜙 𝒙𝒙′

35 CSE 5526: Review 2

What if the classes overlap?

• Allow mis-classifications, but penalize them
• in proportion to distance on the wrong side of the margin
• Add to existing cost, minimize sum of the two

• Introduce “slack variables” 𝜉𝜉𝑝𝑝 ≥ 0
• one per training point
• 𝜉𝜉𝑝𝑝 = max 1 − 𝑑𝑑𝑝𝑝𝑦𝑦 𝒙𝒙𝑝𝑝 , 0

• Interpretation
• 𝜉𝜉𝑝𝑝 = 0 for points on the correct side of the margin
• 0 < 𝜉𝜉𝑝𝑝 < 1 for correctly classified points within margin
• 𝜉𝜉𝑝𝑝 > 1 for mis-classified points

36 CSE 5526: Review 2

Meaning of 𝜉𝜉𝑝𝑝

37 CSE 5526: Review 2

Incorporate slack variables in optimization

• New problem:

argmin𝒘𝒘,𝑏𝑏
1
2

𝒘𝒘 2 + 𝐶𝐶�𝜉𝜉𝑝𝑝
𝑝𝑝

Subject to 𝑑𝑑𝑝𝑝𝑦𝑦 𝒙𝒙𝑝𝑝 ≥ 1 − 𝜉𝜉𝑝𝑝

• So constraint 𝑑𝑑𝑝𝑝𝑦𝑦 𝒙𝒙𝑝𝑝 ≥ 1 has been relaxed
• But now minimize the sum of the 𝜉𝜉𝑝𝑝s too
• 𝐶𝐶 controls trade-off between margin and slack

• As 𝐶𝐶 → ∞, return to SVM for separable data

38 CSE 5526: Review 2

CSE 5526: Introduction to Neural Networks

Unsupervised learning and
Self-organizing maps

39 CSE 5526: Review 2

Types of learning

• Supervised learning: Detailed desired output is
provided externally

• Reinforcement learning: Desired end state of an
interaction with environment is provided
• Learn best actions to take to get there

• Unsupervised learning: Discover structure in data
• E.g., competitive learning and self organization

40 CSE 5526: Review 2

Unsupervised learning

• Goal: learn the distribution of a set of observations
• Some observations are a better “fit” than others

• Self-organizing maps create spatially coherent
internal representations

• Hopfield networks store a set of observations
• Deterministic, non-linear dynamical system

• Boltzmann machines can behave similarly
• Stochastic, non-linear dynamical system

• Boltzmann machines with hidden units have a much
greater capacity for learning the data distribution

41 CSE 5526: Review 2

Winner-take-all (WTA) networks
implement competitive dynamics

• Recurrent neural network
• Each neuron excited by input
• Recurrent dynamics eventually lead to one “winner”
• Update winning neuron to be more sensitive to that input

• Similar to K-means algorithm
• Two different architectures

• Global inhibition
• Mutual inhibition

42 CSE 5526: Review 2

A self-organizing map is a WTA network
with a notion of distance between neurons

43 CSE 5526: Review 2

A self-organizing map is a WTA network
with a notion of distance between neurons

• Each node in the SOM has a prototype vector
• Computes activation based on distance to an input
• What it’s looking for or excited by

• Each node in the SOM has a set of neighbors
• Or a distance function to the rest of the neurons

• Learning in the SOM adjusts the prototypes
• So that neurons that are “close” to each other

have prototypes that are “close” to each other
• Learns a nonlinear dimensionality reduction

44 CSE 5526: Review 2

SOM training

• Activate neurons based on distance to inputs
• Find winner, the neuron most activated

• Update neurons based on distance to winner
• Winner’s prototype is updated to be closer to input
• Neighbors’ prototypes are updated less
• Far away neurons are not updated

• No global objective being optimized
• But interesting behavior in practice

45 CSE 5526: Review 2

SOM training example:
Initial configuration of neuron prototypes

𝑥𝑥1

𝑥𝑥2

46 CSE 5526: Review 2

SOM training example:
Observe point

𝑥𝑥1

𝑥𝑥2

47 CSE 5526: Review 2

SOM training example:
Find closest neuron to observation

𝑥𝑥1

𝑥𝑥2

48 CSE 5526: Review 2

SOM training example:
Activate neurons close in grid to that neuron

𝑥𝑥1

𝑥𝑥2

49 CSE 5526: Review 2

SOM training example:
Move selected neurons towards observation

𝑥𝑥1

𝑥𝑥2

50 CSE 5526: Review 2

SOM training example:
Observe next point

𝑥𝑥1

𝑥𝑥2

51 CSE 5526: Review 2

SOM training example:
After many iterations

𝑥𝑥1

𝑥𝑥2

52 CSE 5526: Review 2

CSE 5526: Introduction to Neural Networks

Hopfield networks

53 CSE 5526: Review 2

Hopfield networks are unsupervised models
that relate new observations to “memories”

• Store a set of “fundamental memories”
{𝛏𝛏1, 𝛏𝛏2, … , 𝛏𝛏𝑀𝑀}

• So that when presented with a new pattern 𝐱𝐱
• The system outputs the stored memory that is most

similar to 𝐱𝐱
• Is that possible to implement as a neural network?

• Can it be trained to remember any pattern?
• How many can it store at once?

54 CSE 5526: Review 2

State of each neuron defines the “state space”

• The network is in state 𝒙𝒙𝑡𝑡 at time 𝑡𝑡
• The state of the network evolves according to

𝒙𝒙𝑡𝑡+1 = 𝜑𝜑(𝑊𝑊𝒙𝒙𝑡𝑡 + 𝒃𝒃)
• Where we set 𝒃𝒃 = 0 without loss of generality

• {𝒙𝒙1, 𝒙𝒙2, … , 𝒙𝒙𝑡𝑡} is called a state trajectory
• Goal: set 𝑊𝑊 so that state trajectory of corrupted

memory 𝝃𝝃𝑖𝑖 + Δ converges to true memory 𝝃𝝃𝑖𝑖

55 CSE 5526: Review 2

One-shot storage phase uses Hebbian learning

• Hopfield nets set 𝑊𝑊 using the outer-product rule
• For synchronous updates, with 𝑁𝑁 bits

𝑊𝑊𝑠𝑠 =
1
𝑁𝑁
� 𝝃𝝃𝜇𝜇𝝃𝝃𝜇𝜇𝑇𝑇
𝑀𝑀

𝜇𝜇=1

• Easier for proving stability of memories
• For asynchronous updates, enforce 𝑊𝑊𝑖𝑖𝑖𝑖 = 0

𝑊𝑊𝑎𝑎 =
1
𝑁𝑁
�𝝃𝝃𝜇𝜇𝝃𝝃𝜇𝜇𝑇𝑇 − 𝐼𝐼
𝑀𝑀

𝜇𝜇=1

• Easier for proving energy minimization

56 CSE 5526: Review 2

Retrieval phase

• Play out dynamics 𝒙𝒙𝑡𝑡+1 = 𝜑𝜑(𝑊𝑊𝒙𝒙𝑡𝑡)
• Until reaching a stable state 𝒙𝒙𝑡𝑡+1 = 𝒙𝒙𝑡𝑡
• If argument to 𝜑𝜑 ⋅ is 0, neuron stays in previous state

– Leads to symmetric flow diagrams

• Synchronous updates update all bits at once
• Easier for proving stability of memories

• Asynchronous updates update a random bit at a time
• Easier for proving energy minimization

57 CSE 5526: Review 2

Memory capacity for a single bit:
Prob of error is defined by amount of cross-talk

• Define, for synchronous updates and 𝑊𝑊𝑠𝑠

𝐶𝐶𝑗𝑗𝜗𝜗 = −𝜉𝜉𝜗𝜗,𝑗𝑗�� 𝜉𝜉𝜇𝜇,𝑗𝑗𝜉𝜉𝜇𝜇,𝑖𝑖𝜉𝜉𝜗𝜗,𝑖𝑖
𝜇𝜇≠𝜗𝜗𝑖𝑖

• Amount cross-talk pushes bit 𝑗𝑗 in the wrong
direction

𝐶𝐶𝑗𝑗𝜗𝜗 < 0 ⇒ stable
0 ≤ 𝐶𝐶𝑗𝑗𝜗𝜗 < 𝑁𝑁 ⇒ stable
𝐶𝐶𝑗𝑗𝜗𝜗 > 𝑁𝑁 ⇒ unstable

58 CSE 5526: Review 2

Capacity: Lower error prob requires smaller 𝑀𝑀

𝑃𝑃error 𝑴𝑴max/𝑵𝑵
0.001 0.105

0.0036 0.138
0.01 0.185
0.05 0.37
0.1 0.61

• 𝑃𝑃error = 1
2

1 − erf 𝑁𝑁
2𝑀𝑀

• So 𝑃𝑃error < 0.01 ⇒ 𝑀𝑀max = 0.185𝑁𝑁, for one bit
• If we want perfect retrieval for 𝑁𝑁 bits with prob 0.99

𝑀𝑀max =
𝑁𝑁

2log 𝑁𝑁

59 CSE 5526: Review 2

Energy function (Lyapunov function)

• The existence of an energy (Lyapunov) function for
a dynamical system ensures its stability

• The energy function for the Hopfield net is

𝐸𝐸 𝐱𝐱 = −
1
2
��𝑤𝑤𝑗𝑗𝑗𝑗𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗

𝑗𝑗𝑖𝑖

= −
1
2
𝒙𝒙𝑇𝑇𝑊𝑊𝒙𝒙

• Theorem: Given symmetric weights, 𝑤𝑤𝑗𝑗𝑗𝑗 = 𝑤𝑤𝑖𝑖𝑗𝑗, the
energy function does not increase as the Hopfield
net evolves asynchronously

60 CSE 5526: Review 2

Spurious states

• Not all local minima (stable states) correspond to
fundamental memories.

• Other attractors:
• −𝛏𝛏 𝜇𝜇

• linear combination of odd number of memories
• other uncorrelated patterns

• Such attractors are called spurious states

61 CSE 5526: Review 2

CSE 5526: Introduction to Neural Networks

Boltzmann machines

62 CSE 5526: Review 2

Boltzmann machines are
unsupervised probability models

• The primary goal of Boltzmann machine learning is
to produce a network that models the probability
distribution of observed data (at visible neurons)
• Such a net can be used for pattern completion, as a part of

an associative memory, etc.
• What do we want to do with it?

• Compute the probability of a new observation
• Learn parameters of the model from data
• Estimate likely values completing partial observations

63 CSE 5526: Review 2

Boltzmann machines have
the same energy function as Hopfield networks

• Because of symmetric connections, the energy
function of neuron configuration 𝐱𝐱 is:

𝐸𝐸 𝐱𝐱 = −
1
2
��𝑤𝑤𝑗𝑗𝑗𝑗𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗

𝑗𝑗𝑖𝑖

= −
1
2
𝐱𝐱𝑇𝑇𝑊𝑊𝐱𝐱

• Can we start there and derive a probability

distribution over configurations?

64 CSE 5526: Review 2

Boltzmann machines are
a stochastic extension of Hopfield networks

65 CSE 5526: Review 2

The Boltzmann-Gibbs distribution
defines probabilities from energies

• Consider a physical system with many states.
• Let 𝑝𝑝𝑖𝑖 denote the probability of occurrence of state 𝑖𝑖
• Let 𝐸𝐸𝑖𝑖 denote the energy of state 𝑖𝑖

• From statistical mechanics, when the system is in
thermal equilibrium, it satisfies

𝑝𝑝𝑖𝑖 =
1
𝑍𝑍

exp −
𝐸𝐸𝑖𝑖
𝑇𝑇

 where 𝑍𝑍 = �exp −
𝐸𝐸𝑖𝑖
𝑇𝑇

𝑖𝑖

• Z is called the partition function, and 𝑇𝑇 is called the
temperature

• The Boltzmann-Gibbs distribution

66 CSE 5526: Review 2

Remarks

• Lower energy states have higher probability of
occurrences

• As 𝑇𝑇 decreases, the probability is concentrated on a
small subset of low energy states

67 CSE 5526: Review 2

Boltzmann-Gibbs distribution applied to
Hopfield network energy function

𝑝𝑝 𝒙𝒙 =
1
𝑍𝑍

exp −
1
𝑇𝑇
𝐸𝐸 𝒙𝒙 =

1
𝑍𝑍

exp
1

2𝑇𝑇
𝒙𝒙𝑇𝑇𝑊𝑊𝒙𝒙

• Partition function For 𝑁𝑁 neurons, involves 2𝑁𝑁 terms

𝑍𝑍 = �exp −
1
𝑇𝑇
𝐸𝐸 𝒙𝒙

𝒙𝒙

• Marginal over 𝐻𝐻 of the neurons Involves 2𝐻𝐻 terms

𝑝𝑝 𝒙𝒙𝛼𝛼 = �𝑝𝑝 𝒙𝒙𝛼𝛼, 𝒙𝒙𝛽𝛽
𝒙𝒙𝛽𝛽

68 CSE 5526: Review 2

Learning can be performed by gradient descent

• The objective of Boltzmann machine learning is to
maximize the likelihood of the visible units taking
on training patterns by adjusting W

• Assuming that each pattern of the training sample is
statistically independent, the log probability of the
training sample is:

𝐿𝐿 𝐰𝐰 = log�𝑃𝑃(𝐱𝐱𝛼𝛼)
𝐱𝐱𝛼𝛼

= �log 𝑃𝑃(𝐱𝐱𝛼𝛼)
𝐱𝐱𝛼𝛼

69 CSE 5526: Review 2

Gradient of log likelihood of data has two terms

𝜕𝜕𝜕𝜕(𝐰𝐰)
𝜕𝜕𝑤𝑤𝑗𝑗𝑗𝑗

=
1
𝑇𝑇
𝜌𝜌𝑗𝑗𝑗𝑗+ − 𝜌𝜌𝑗𝑗𝑗𝑗−

• Where
𝜌𝜌𝑗𝑗𝑗𝑗+ = ∑ ∑ 𝑃𝑃 𝐱𝐱𝛽𝛽 𝐱𝐱𝛼𝛼 𝑥𝑥𝑗𝑗𝑥𝑥𝑖𝑖𝐱𝐱𝛽𝛽𝐱𝐱𝛼𝛼 = ∑ 𝐸𝐸𝒙𝒙𝛽𝛽|𝒙𝒙𝛼𝛼 𝑥𝑥𝑗𝑗𝑥𝑥𝑖𝑖𝛼𝛼
• is the mean correlation between neurons i and j when the

visible units are “clamped” to 𝐱𝐱𝛼𝛼

• And 𝜌𝜌𝑗𝑗𝑗𝑗− = ∑ 𝑃𝑃 𝐱𝐱 𝑥𝑥𝑗𝑗𝑥𝑥𝑖𝑖𝐱𝐱 = 𝐸𝐸𝒙𝒙𝛽𝛽,𝒙𝒙𝛼𝛼 𝑥𝑥𝑗𝑗𝑥𝑥𝑖𝑖
• is the mean correlation between i and j when the machine

operates without “clamping”

70 CSE 5526: Review 2

Full Boltzmann machine training algorithm

• The entire algorithm consists of the following
nested loops:
1. Loop over all training data points, accumulating

gradient of each weight
2. For each data point, compute expectation 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗 with 𝐱𝐱𝛼𝛼

clamped and free
3. Compute expectations using simulated annealing,

gradually decreasing T
4. For each T, sample the state of the entire net a number

of times using Gibbs sampling

71 CSE 5526: Review 2

CSE 5526: Introduction to Neural Networks

Deep Belief Networks

72 CSE 5526: Review 2

Convolutional networks are deep networks
that are feasible to train

• Neural network that learns “receptive fields”
• And applies them across different spatial positions

• Weight matrices are very constrained
• Train using standard backprop

73 CSE 5526: Review 2

Another way to train deep neural nets
is to use unsupervised pre-training

• Build training up from the bottom
• Train a shallow model to describe the data
• Treat that as a fixed transformation
• Train another shallow model on transformed data
• Etc.

• No long-distance gradients necessary
• Initialize a deep neural network with these params

74 CSE 5526: Review 2

Restricted Boltzmann machines
can be used as building blocks in this way

• A restricted Boltzmann machine (RBM) is a
Boltzmann machine with one visible layer and one
hidden layer, and no connection within each layer

75 CSE 5526: Review 2

RBM conditionals are easy to compute

• The energy function is:

𝐸𝐸 𝐯𝐯, 𝐡𝐡 = −
1
2
��𝑤𝑤𝑗𝑗𝑗𝑗𝑣𝑣𝑗𝑗

𝑗𝑗𝑖𝑖

ℎ𝑖𝑖 = −
1
2
𝒗𝒗𝑇𝑇𝑊𝑊𝒉𝒉

• So 𝑝𝑝 𝒗𝒗 𝒉𝒉 , 𝑝𝑝 𝒉𝒉 𝒗𝒗 are now easy to compute
• No Gibbs sampling necessary

𝑝𝑝 𝒉𝒉 𝒗𝒗 = exp
1
2
𝒗𝒗𝑇𝑇𝑊𝑊𝒉𝒉 �exp

1
2
𝒗𝒗𝑇𝑇𝑊𝑊𝒉𝒉

𝒉𝒉

−1

�exp
1
2
𝒗𝒗𝑇𝑇𝑊𝑊𝒉𝒉

𝒉𝒉

= ��exp
1
2
𝒗𝒗𝑇𝑇𝑊𝑊𝑖𝑖⋅ℎ𝑖𝑖

ℎ𝑖𝑖𝑖𝑖

76 CSE 5526: Review 2

Training a general deep net layer-by-layer

1. First learn 𝑊𝑊 with all weights tied
2. Freeze (fix) 𝑊𝑊 as 𝑊𝑊0, which represents the

learned weights for the first hidden layer
3. Learn the weights for the second hidden layer by

treating responses of the first hidden layer to the
training data as “input data”

4. Freeze the weights for the second hidden layer
5. Repeat steps 3-4 as many times as the prescribed

number of hidden layers

77 CSE 5526: Review 2

Thus an infinite belief network can be
implemented with finite computation

𝐻𝐻0

𝑉𝑉0
𝑊𝑊 𝑊𝑊𝑇𝑇

78 CSE 5526: Review 2

Thus an infinite belief network can be
implemented with finite computation

𝑉𝑉1

𝐻𝐻0

𝑉𝑉0
𝑊𝑊0

𝑊𝑊 𝑊𝑊𝑇𝑇

79 CSE 5526: Review 2

Thus an infinite belief network can be
implemented with finite computation

𝐻𝐻1

𝑉𝑉1

𝐻𝐻0

𝑉𝑉0
𝑊𝑊0

𝑊𝑊1

𝑊𝑊 𝑊𝑊𝑇𝑇

80 CSE 5526: Review 2

Thus an infinite belief network can be
implemented with finite computation

𝑉𝑉2

𝐻𝐻1

𝑉𝑉1

𝐻𝐻0

𝑉𝑉0
𝑊𝑊0

𝑊𝑊1

𝑊𝑊2

𝑊𝑊 𝑊𝑊𝑇𝑇

81 CSE 5526: Review 2

Thus an infinite belief network can be
implemented with finite computation

𝐻𝐻2

𝑉𝑉2

𝐻𝐻1

𝑉𝑉1

𝐻𝐻0

𝑉𝑉0
𝑊𝑊0

𝑊𝑊1

𝑊𝑊2

𝑊𝑊3

𝑊𝑊 𝑊𝑊𝑇𝑇

82 CSE 5526: Review 2

Remarks (Hinton, Osindero, Yeh, 2006)

• As the number of layers increases, the maximum
likelihood approximation of the training data
improves

• For discriminative training (e.g. for classification)
we add an output layer on top of the learned
generative model, and train the entire net by a
discriminative algorithm

• Although much faster than Boltzmann machines
(e.g. no simulated annealing), pretraining is still
quite slow, and involves a lot of design as for MLP

83 CSE 5526: Review 2

DBNs have been successfully applied
to an increasing number of tasks

• Ex: MNIST handwritten digit recognition
• A DBN with two hidden layers achieves 1.25%

error rate, vs. 1.4% for SVM and 1.5% for MLP
• DBN with “gentle” discriminative fine-tuning, 1.15%

• Great example animations
• http://www.cs.toronto.edu/~hinton/digits.html

http://www.cs.toronto.edu/%7Ehinton/digits.html

84 CSE 5526: Review 2

A neural model of digit recognition

2000 top-level neurons

500 neurons

500 neurons

28 x 28
pixel
image

10 label
neurons

Slide from Hinton
MSR Talk

85 CSE 5526: Review 2

CSE 5526: Introduction to Neural Networks

Deep Neural Networks

86 CSE 5526: Review 2

From DBNs to DNNs

• Last lecture described Deep Belief Networks (DBN)
• Unsupervised, generative, deep models of data

• In practice, DBNs are most useful as initialization
for Deep Neural Networks (DNN)
• Supervised, discriminative, deep function approximators
• Both have the same structure
• Weights can be transferred directly, with care

• This lecture covers some DNN details / tricks and
autoencoders, another useful unsupervised approach

87 CSE 5526: Review 2

Autoencoders are unsupervised,
deterministic networks

• Function 𝑓𝑓(𝒙𝒙) trained to predict 𝒙𝒙
• Can be a standard MLP: 𝑓𝑓 𝒙𝒙 = 𝜑𝜑 𝑊𝑊1𝜑𝜑 𝑊𝑊0𝑥𝑥
• Typically, parameters are “tied” so 𝑊𝑊1 = 𝑊𝑊0

𝑇𝑇
• Data 𝒙𝒙 provides its own “supervision” signal
• Some limitation prevents the network from learning

the identity function
• Hidden state of smaller dimension than 𝒙𝒙
• Noisy input (denoising autoencoder)
• Penalize uninteresting solutions (contractive autoencoder)
• Etc.

88 CSE 5526: Review 2

Autoencoder architecture

𝒙𝒙

𝒉𝒉

𝒙𝒙

𝑊𝑊

𝑊𝑊𝑇𝑇

89 CSE 5526: Review 2

Autoencoders can also be stacked
to initialize a deep neural network

𝒉𝒉1

𝒙𝒙

𝑊𝑊1

𝑊𝑊1
𝑇𝑇

𝒙𝒙�

90 CSE 5526: Review 2

Autoencoders can also be stacked
to initialize a deep neural network

𝒉𝒉1

𝒙𝒙

𝑊𝑊1

𝑊𝑊2

𝒉𝒉2

𝒉𝒉�1

𝑊𝑊2
𝑇𝑇

91 CSE 5526: Review 2

Autoencoders can also be stacked
to initialize a deep neural network

𝒉𝒉1

𝒙𝒙

𝑊𝑊1

𝑊𝑊2

𝒉𝒉2

𝒉𝒉3

𝑊𝑊3

𝑊𝑊3
𝑇𝑇

𝒉𝒉�2

92 CSE 5526: Review 2

Each type of data leads to a particular error
function and a particular output unit type

• Constraints lead to error functions
• From negative log likelihood of distributions

• Error functions lead to output non-linearities
• That put the gradients in a particularly nice form

𝛻𝛻𝐸𝐸(𝒘𝒘) = −� 𝑑𝑑𝑘𝑘 − 𝑦𝑦𝑝𝑝𝑝𝑝 𝒂𝒂𝑝𝑝
𝑝𝑝,𝑘𝑘

• In general: distributions in the exponential family
work nicely with output units in the form of the
“canonical link function”

93 CSE 5526: Review 2

Each type of data leads to a particular error
function and a particular output unit type

Data type Error function 𝐸𝐸(𝒘𝒘) Output unit 𝑦𝑦𝑘𝑘

Unconstrained 1
2
� 𝑑𝑑𝑝𝑝𝑝𝑝 − 𝑦𝑦𝑘𝑘

2

𝑝𝑝,𝑘𝑘

 𝒘𝒘𝑘𝑘
𝑇𝑇𝒂𝒂

Binary (Bernoulli) −�𝑑𝑑𝑘𝑘 log 𝑦𝑦𝑝𝑝𝑝𝑝 + 1 − 𝑑𝑑𝑘𝑘 log(1 − 𝑦𝑦𝑝𝑝𝑝𝑝)
𝑝𝑝,𝑘𝑘

1
1 + exp −𝒘𝒘𝑘𝑘

𝑇𝑇𝒂𝒂

Multinomial −�𝑑𝑑𝑘𝑘 log 𝑦𝑦𝑝𝑝𝑝𝑝
𝑝𝑝,𝑘𝑘

 exp (−𝒘𝒘𝑘𝑘
𝑇𝑇𝒂𝒂)

∑ exp −𝒘𝒘𝑘𝑘′
𝑇𝑇 𝒂𝒂𝑘𝑘𝑘

	CSE 5526: Introduction to Neural Networks
	Main topics covered in first half of class
	Main topics covered in second half of class
	CSE 5526: Introduction to Neural Networks
	Perceptrons find any separating hyperplane
	Perceptrons find any separating hyperplane
	Perceptrons find any separating hyperplane
	Perceptrons find any separating hyperplane
	But the maximum margin hyperplane generalizes the best to new data
	The maximum margin only depends �on certain points, the support vectors
	The maximum margin only depends �on certain points, the support vectors
	The maximum margin only depends �on certain points, the support vectors
	𝒘 is perpendicular to the hyperplane,�𝑏 defines its distance from the origin
	The distance from point 𝒙 �to the hyperplane is 𝑦(𝒙)/ 𝒘
	The maximum margin hyperplane�is farthest from all of the data points
	Maximum margin�constrained optimization problem
	Detour: Lagrange multipliers �solve constrained optimization problems
	Lagrange multipliers with general 𝒙
	Gradients of 𝑔 and 𝑓 �are orthogonal to surface at solution point
	Gradients of 𝑔 and 𝑓 are orthogonal to surface�at maximum of 𝑓
	The Lagrangian function captures the constraints on 𝑥 and on the gradients
	Lagrange multipliers can also be used �with inequality constraints 𝑔 𝒙 ≥0
	Back to SVMs: Maximum margin solution �is a fixed point of the Lagrangian function
	Dual form of Lagrangian eliminates 𝒘 and 𝑏
	Classify new points using 𝑦(𝒙)
	Classify new points using 𝑦(𝒙), with kernel
	Summary so far
	Kernels are generalizations of inner products
	Kernelized SVM looks a lot like an RBF net
	Kernel matrix
	Mercer’s theorem relates kernel functions �and inner product spaces
	Some popular kernels
	Some popular kernels
	Example: polynomial kernel
	What if the classes overlap?
	Meaning of 𝜉 𝑝
	Incorporate slack variables in optimization
	CSE 5526: Introduction to Neural Networks
	Types of learning
	Unsupervised learning
	Winner-take-all (WTA) networks �implement competitive dynamics
	A self-organizing map is a WTA network �with a notion of distance between neurons
	A self-organizing map is a WTA network �with a notion of distance between neurons
	SOM training
	SOM training example:�Initial configuration of neuron prototypes
	SOM training example: �Observe point
	SOM training example: �Find closest neuron to observation
	SOM training example: �Activate neurons close in grid to that neuron
	SOM training example: �Move selected neurons towards observation
	SOM training example: �Observe next point
	SOM training example: �After many iterations
	CSE 5526: Introduction to Neural Networks
	Hopfield networks are unsupervised models�that relate new observations to “memories”
	State of each neuron defines the “state space”
	One-shot storage phase uses Hebbian learning
	Retrieval phase
	Memory capacity for a single bit:�Prob of error is defined by amount of cross-talk
	Capacity: Lower error prob requires smaller 𝑀
	Energy function (Lyapunov function)
	Spurious states
	CSE 5526: Introduction to Neural Networks
	Boltzmann machines are �unsupervised probability models
	Boltzmann machines have �the same energy function as Hopfield networks
	Boltzmann machines are �a stochastic extension of Hopfield networks
	The Boltzmann-Gibbs distribution �defines probabilities from energies
	Remarks
	Boltzmann-Gibbs distribution applied to Hopfield network energy function
	Learning can be performed by gradient descent
	Gradient of log likelihood of data has two terms
	Full Boltzmann machine training algorithm
	CSE 5526: Introduction to Neural Networks
	Convolutional networks are deep networks �that are feasible to train
	Another way to train deep neural nets �is to use unsupervised pre-training
	Restricted Boltzmann machines �can be used as building blocks in this way
	RBM conditionals are easy to compute
	Training a general deep net layer-by-layer
	Thus an infinite belief network can be implemented with finite computation
	Thus an infinite belief network can be implemented with finite computation
	Thus an infinite belief network can be implemented with finite computation
	Thus an infinite belief network can be implemented with finite computation
	Thus an infinite belief network can be implemented with finite computation
	Remarks (Hinton, Osindero, Yeh, 2006)
	DBNs have been successfully applied �to an increasing number of tasks
	A neural model of digit recognition
	CSE 5526: Introduction to Neural Networks
	From DBNs to DNNs
	Autoencoders are unsupervised, �deterministic networks
	Autoencoder architecture
	Autoencoders can also be stacked �to initialize a deep neural network
	Autoencoders can also be stacked �to initialize a deep neural network
	Autoencoders can also be stacked �to initialize a deep neural network
	Each type of data leads to a particular error function and a particular output unit type
	Each type of data leads to a particular error function and a particular output unit type

