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CSE 5526: Introduction to Neural Networks 

Second Half Review 
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Main topics covered in first half of class 

• McCulloch-Pitts neurons 
• Designing networks by hand 
• Training using the perceptron algorithm 

• Linear regression 
• Closed-form solution 
• Training using gradient descent 

• Multi-layer perceptrons 
• Backpropagation training algorithm 
• Generalization, over-fitting, under-fitting, learning curves 

• Radial basis function networks 
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Main topics covered in second half of class 

• Support vector machines 
• Lagrange multipliers 
• Maximum margin formulation, primal and dual 
• Kernels 
• Training SVMs on non-separable data (slack variables) 

• Unsupervised learning 
• Self-organizing maps 
• Hopfield networks 
• (Restricted) Boltzmann machines 
• Deep belief networks and deep neural networks 



4 CSE 5526: Review 2 

CSE 5526: Introduction to Neural Networks 

Support Vector Machines 
(SVM) 
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Perceptrons find any separating hyperplane 
Depends on initialization and ordering of training points 
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But the maximum margin hyperplane 
generalizes the best to new data 

Margin 

According to computational/statistical learning theory 
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The maximum margin only depends  
on certain points, the support vectors 

Margin 
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The maximum margin only depends  
on certain points, the support vectors 

Margin 
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𝒘𝒘 is perpendicular to the hyperplane, 
𝑏𝑏 defines its distance from the origin 
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The distance from point 𝒙𝒙  
to the hyperplane is 𝑦𝑦(𝒙𝒙)/ 𝒘𝒘  
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The maximum margin hyperplane 
is farthest from all of the data points 

min𝑝𝑝𝑑𝑑𝑝𝑝𝑦𝑦(𝒙𝒙𝑝𝑝)/ 𝒘𝒘  
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Maximum margin 
constrained optimization problem 

• Which is equivalent to  

argmin𝒘𝒘,𝑏𝑏
1
2

𝒘𝒘 2  subject to 𝑑𝑑𝑝𝑝 𝒘𝒘𝑇𝑇𝒙𝒙𝑝𝑝 + 𝑏𝑏 ≥ 1 

• This is a well studied type of problem 
• A quadratic program with linear inequality constraints 
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Detour: Lagrange multipliers  
solve constrained optimization problems 

• Want to maximize a function 𝑓𝑓 𝑥𝑥1, 𝑥𝑥2  
• Subject to the equality constraint 𝑔𝑔 𝑥𝑥1, 𝑥𝑥2 = 0 
• Could solve 𝑔𝑔 𝑥𝑥1, 𝑥𝑥2 = 0 for 𝑥𝑥1 in terms of 𝑥𝑥2 

• But that is hard to do in general (i.e., on computers) 
• Or could use Lagrange multipliers 

• Which are easier to use in general (i.e., on computers) 
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Lagrange multipliers with general 𝒙𝒙 

• In general, we can write 
max𝒙𝒙𝑓𝑓 𝒙𝒙  subject to 𝑔𝑔 𝒙𝒙 = 0 

• Constraint 𝑔𝑔 𝒙𝒙 = 0 defines a 𝐷𝐷 − 1 dimensional 
surface for 𝐷𝐷 dimensional 𝒙𝒙 
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Gradients of 𝑔𝑔 and 𝑓𝑓  
are orthogonal to surface at solution point 
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Gradients of 𝑔𝑔 and 𝑓𝑓 are orthogonal to surface 
at maximum of 𝑓𝑓 

• For 𝑔𝑔 because for all points on the surface 𝑔𝑔 𝒙𝒙 = 0 
• Meaning that the directional derivative along it is 0 
• So the gradient must be perpendicular to it 

• For 𝑓𝑓 because if it wasn’t, you could move along 
the surface in the direction of the gradient to find a 
better maximum of 𝑓𝑓 

• Thus 𝛻𝛻𝛻𝛻 and 𝛻𝛻𝑔𝑔 are (anti-)parallel 
• And there must exist a scalar 𝜆𝜆 such that  

𝛻𝛻𝛻𝛻 + 𝜆𝜆𝜆𝜆𝜆𝜆 = 0 
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The Lagrangian function captures the 
constraints on 𝑥𝑥 and on the gradients 

𝐿𝐿 𝒙𝒙, 𝜆𝜆 = 𝑓𝑓 𝒙𝒙 + 𝜆𝜆𝜆𝜆 𝒙𝒙  
• Setting gradient of 𝐿𝐿 with respect to 𝒙𝒙 to 0 gives 

𝛻𝛻𝑓𝑓 + 𝜆𝜆𝛻𝛻𝑔𝑔 = 0 
• Setting partial of 𝐿𝐿 with respect to 𝜆𝜆 to 0 gives 

𝑔𝑔 𝒙𝒙 = 0 
• Thus stationary points of 𝐿𝐿 solve the constrained 

optimization problem 
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Lagrange multipliers can also be used  
with inequality constraints 𝑔𝑔 𝒙𝒙 ≥ 0 
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Back to SVMs: Maximum margin solution  
is a fixed point of the Lagrangian function 

• Recall, the maximum margin hyperplane is 

argmin𝒘𝒘,𝑏𝑏
1
2

𝒘𝒘 2  subject to 𝑑𝑑𝑝𝑝 𝒘𝒘𝑇𝑇𝒙𝒙𝑝𝑝 + 𝑏𝑏 ≥ 1 

• Minimization of a quadratic function subject to multiple 
linear inequality constraints 

• Will use Lagrange multipliers, 𝑎𝑎𝑝𝑝, to write 
Lagrangian function 

𝐿𝐿 𝒘𝒘, 𝑏𝑏, 𝒂𝒂 =
1
2

𝒘𝒘 2 −�𝑎𝑎𝑝𝑝(𝑑𝑑𝑝𝑝 𝒘𝒘𝑇𝑇𝒙𝒙𝑝𝑝 + 𝑏𝑏 − 1)
𝑝𝑝

 

• Note that 𝒙𝒙𝑝𝑝 and 𝑑𝑑𝑝𝑝 are fixed for the optimization 
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Dual form of Lagrangian eliminates 𝒘𝒘 and 𝑏𝑏 

• Dual form of Lagrangian, maximize: 

𝐿𝐿� 𝒂𝒂 = −
1
2
��𝑎𝑎𝑝𝑝𝑎𝑎𝑞𝑞

𝑞𝑞

𝑑𝑑𝑝𝑝𝑑𝑑𝑞𝑞𝒙𝒙𝑝𝑝𝑇𝑇𝒙𝒙𝑞𝑞
𝑝𝑝

+ �𝑎𝑎𝑝𝑝
𝑝𝑝

 

• Subject to the constraints 

𝑎𝑎𝑝𝑝 ≥ 0  ∀𝑝𝑝          �𝑎𝑎𝑝𝑝𝑑𝑑𝑝𝑝 = 0
𝑝𝑝

 

• Another quadratic programming problem subject to 
linear inequality and equality constraints 
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Classify new points using 𝑦𝑦(𝒙𝒙) 

• Actual prediction function is still 
𝑦𝑦 𝒙𝒙 = 𝒘𝒘𝑇𝑇𝒙𝒙 + 𝑏𝑏 

• Get 𝒘𝒘 from primal Lagrangian 

𝒘𝒘 = �𝑎𝑎𝑝𝑝𝑑𝑑𝑝𝑝𝒙𝒙𝑝𝑝
𝑝𝑝

 

• Will discuss 𝑏𝑏 shortly, so 

𝑦𝑦 𝒙𝒙 = �𝑎𝑎𝑝𝑝𝑑𝑑𝑝𝑝𝒙𝒙𝑝𝑝𝑇𝑇𝒙𝒙
𝑝𝑝

+ 𝑏𝑏 
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Classify new points using 𝑦𝑦(𝒙𝒙), with kernel 

• With a kernel, 𝒘𝒘𝑇𝑇 = ∑ 𝑎𝑎𝑝𝑝𝑑𝑑𝑝𝑝𝜙𝜙 𝒙𝒙𝑝𝑝𝑝𝑝  
• Actual prediction function is  

𝑦𝑦 𝒙𝒙 = 𝒘𝒘𝑇𝑇𝜙𝜙 𝒙𝒙 + 𝑏𝑏 

= �𝑎𝑎𝑝𝑝𝑑𝑑𝑝𝑝𝜙𝜙𝑇𝑇 𝒙𝒙𝑝𝑝 𝜙𝜙 𝒙𝒙
𝑝𝑝

+ 𝑏𝑏 

= �𝑎𝑎𝑝𝑝𝑑𝑑𝑝𝑝𝑘𝑘(𝒙𝒙𝑝𝑝, 𝒙𝒙) 
𝑝𝑝

+ 𝑏𝑏 

• In practice, save all 𝒙𝒙𝑝𝑝 with 𝑎𝑎𝑝𝑝 > 0 
• And compute 𝑘𝑘(𝒙𝒙𝑝𝑝, 𝒙𝒙) at test time 
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Summary so far 

• Finding the maximum margin hyperplane has been 
formulated as a constrained quadratic program 
• Convex problem, well studied, easy conceptually to solve 

• Can be solved in the primal or dual formulation 
• Dual formulation permits the use of kernel functions 

• Only some data points contribute to the solution 
• The support vectors 

• So far, only applies to linearly separable data 
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Kernels are generalizations of inner products 

• A kernel is a function of two data points such that 
𝑘𝑘 𝑥𝑥, 𝑥𝑥′ = 𝜙𝜙𝑇𝑇 𝑥𝑥 𝜙𝜙(𝑥𝑥′) 

 For some function 𝜙𝜙 𝑥𝑥  
• It is therefore symmetric: 𝑘𝑘 𝑥𝑥, 𝑥𝑥′ = 𝑘𝑘 𝑥𝑥′, 𝑥𝑥  
• Can compute 𝑘𝑘 𝑥𝑥, 𝑥𝑥′  from an explicit 𝜙𝜙 𝑥𝑥  
• Or prove that 𝑘𝑘 𝑥𝑥, 𝑥𝑥′  corresponds to some 𝜙𝜙 𝑥𝑥  

• Never need to actually compute 𝜙𝜙 𝑥𝑥  
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Kernelized SVM looks a lot like an RBF net 
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Kernel matrix 

• The matrix 
 

𝐊𝐊 =

𝑘𝑘(𝐱𝐱1, 𝐱𝐱1)
 

⋯
⋮

𝑘𝑘(𝐱𝐱1, 𝐱𝐱𝑁𝑁)
 

… 𝑘𝑘(𝐱𝐱𝑖𝑖, 𝐱𝐱𝑗𝑗) …
 

𝑘𝑘(𝐱𝐱𝑁𝑁, 𝐱𝐱1)
⋮
…

 
𝑘𝑘(𝐱𝐱𝑁𝑁, 𝐱𝐱𝑁𝑁)

 

  
 is called the kernel matrix, or the Gram matrix. 
• K is positive semidefinite 
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Mercer’s theorem relates kernel functions  
and inner product spaces 

• Suppose that for all finite sets of points 𝒙𝒙𝑝𝑝 𝑝𝑝=1
𝑁𝑁

 and 
real numbers 𝒂𝒂 𝑝𝑝=1

∞  

�𝑎𝑎𝑗𝑗𝑎𝑎𝑖𝑖𝑘𝑘 𝒙𝒙𝑖𝑖, 𝒙𝒙𝑗𝑗
𝑖𝑖,𝑗𝑗

≥ 0 

• Then 𝑲𝑲 is called a positive semidefinite kernel 
• And can be written as 

𝑘𝑘 𝒙𝒙, 𝒙𝒙′ = 𝜙𝜙𝑇𝑇 𝒙𝒙 𝜙𝜙(𝒙𝒙′) 
• For some vector-valued function 𝜙𝜙 𝒙𝒙  
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Some popular kernels 

• Polynomial kernel, parameters 𝑐𝑐 and 𝑝𝑝 
𝑘𝑘 𝒙𝒙, 𝒙𝒙′ = 𝒙𝒙𝑇𝑇𝒙𝒙′ + 𝑐𝑐 𝑝𝑝 

• Finite-dimensional 𝜙𝜙(𝒙𝒙) can be explicitly computed 
 

• Gaussian or RBF kernel, parameter 𝜎𝜎 

𝑘𝑘 𝒙𝒙, 𝒙𝒙′ = exp −
1
2𝜎𝜎

𝒙𝒙 − 𝒙𝒙′ 2  

• Infinite-dimensional 𝜙𝜙(𝒙𝒙) 
• Equivalent to RBF network, but more principled way of 

finding centers 
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Some popular kernels 

• Hypebolic tangent kernel, parameters 𝛽𝛽1 and 𝛽𝛽2 
𝑘𝑘 𝒙𝒙, 𝒙𝒙′ = tanh 𝛽𝛽1𝒙𝒙𝑇𝑇𝒙𝒙′ + 𝛽𝛽2  

• Only positive semidefinite for some values of 𝛽𝛽1 and 𝛽𝛽2 
• Inspired by neural networks, but more principled way of 

selecting number of hidden units 
 

• String kernels or other structure kernels 
• Can prove that they are positive definite 
• Computed between non-numeric items 
• Avoid converting to fixed-length feature vectors 
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Example: polynomial kernel 

• Polynomial kernel in 2D, 𝑐𝑐 = 1, 𝑝𝑝 = 2 
𝑘𝑘 𝒙𝒙, 𝒙𝒙′ = 𝒙𝒙𝑇𝑇𝒙𝒙′ + 1 2 = 𝑥𝑥1𝑥𝑥1′ + 𝑥𝑥2𝑥𝑥2′ + 1 2 

= 𝑥𝑥12𝑥𝑥1′
2 + 𝑥𝑥22𝑥𝑥2′

2 + 2𝑥𝑥1𝑥𝑥1′𝑥𝑥2𝑥𝑥2′ + 2𝑥𝑥1𝑥𝑥1′ + 2𝑥𝑥2𝑥𝑥2′ + 1 
• If we define 

𝜙𝜙 𝒙𝒙 = 𝑥𝑥12, 𝑥𝑥22, 2x1x2, 2x1, 2x2, 1
𝑇𝑇

 
• Then 𝑘𝑘 𝒙𝒙, 𝒙𝒙′ = 𝜙𝜙𝑇𝑇 𝒙𝒙 𝜙𝜙 𝒙𝒙′  
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What if the classes overlap? 

• Allow mis-classifications, but penalize them 
• in proportion to distance on the wrong side of the margin 
• Add to existing cost, minimize sum of the two 

• Introduce “slack variables” 𝜉𝜉𝑝𝑝 ≥ 0 
• one per training point 
• 𝜉𝜉𝑝𝑝 = max 1 − 𝑑𝑑𝑝𝑝𝑦𝑦 𝒙𝒙𝑝𝑝 , 0  

• Interpretation 
• 𝜉𝜉𝑝𝑝 = 0 for points on the correct side of the margin 
• 0 < 𝜉𝜉𝑝𝑝 < 1 for correctly classified points within margin 
• 𝜉𝜉𝑝𝑝 > 1 for mis-classified points 
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Meaning of 𝜉𝜉𝑝𝑝 



37 CSE 5526: Review 2 

Incorporate slack variables in optimization 

• New problem: 

argmin𝒘𝒘,𝑏𝑏
1
2

𝒘𝒘 2 + 𝐶𝐶�𝜉𝜉𝑝𝑝
𝑝𝑝

 

Subject to  𝑑𝑑𝑝𝑝𝑦𝑦 𝒙𝒙𝑝𝑝 ≥ 1 − 𝜉𝜉𝑝𝑝 

• So constraint 𝑑𝑑𝑝𝑝𝑦𝑦 𝒙𝒙𝑝𝑝 ≥ 1 has been relaxed 
• But now minimize the sum of the 𝜉𝜉𝑝𝑝s too 
• 𝐶𝐶 controls trade-off between margin and slack 

• As 𝐶𝐶 → ∞, return to SVM for separable data 
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CSE 5526: Introduction to Neural Networks 

Unsupervised learning and 
Self-organizing maps 
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Types of learning 

• Supervised learning: Detailed desired output is 
provided externally 

• Reinforcement learning: Desired end state of an 
interaction with environment is provided 
• Learn best actions to take to get there 

• Unsupervised learning: Discover structure in data 
• E.g., competitive learning and self organization 
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Unsupervised learning 

• Goal: learn the distribution of a set of observations 
• Some observations are a better “fit” than others 

• Self-organizing maps create spatially coherent 
internal representations 

• Hopfield networks store a set of observations 
• Deterministic, non-linear dynamical system 

• Boltzmann machines can behave similarly 
• Stochastic, non-linear dynamical system 

• Boltzmann machines with hidden units have a much 
greater capacity for learning the data distribution 
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Winner-take-all (WTA) networks  
implement competitive dynamics 

• Recurrent neural network 
• Each neuron excited by input 
• Recurrent dynamics eventually lead to one “winner” 
• Update winning neuron to be more sensitive to that input 

• Similar to K-means algorithm 
• Two different architectures 

• Global inhibition 
• Mutual inhibition 
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A self-organizing map is a WTA network  
with a notion of distance between neurons 
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A self-organizing map is a WTA network  
with a notion of distance between neurons 

• Each node in the SOM has a prototype vector 
• Computes activation based on distance to an input 
• What it’s looking for or excited by 

• Each node in the SOM has a set of neighbors 
• Or a distance function to the rest of the neurons 

• Learning in the SOM adjusts the prototypes 
• So that neurons that are “close” to each other  

have prototypes that are “close” to each other 
• Learns a nonlinear dimensionality reduction 
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SOM training 

• Activate neurons based on distance to inputs 
• Find winner, the neuron most activated 

• Update neurons based on distance to winner 
• Winner’s prototype is updated to be closer to input 
• Neighbors’ prototypes are updated less 
• Far away neurons are not updated 

• No global objective being optimized 
• But interesting behavior in practice 
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SOM training example: 
Initial configuration of neuron prototypes 

𝑥𝑥1 

𝑥𝑥2 



46 CSE 5526: Review 2 

SOM training example:  
Observe point 

𝑥𝑥1 

𝑥𝑥2 
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SOM training example:  
Find closest neuron to observation 

𝑥𝑥1 

𝑥𝑥2 
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SOM training example:  
Activate neurons close in grid to that neuron 

𝑥𝑥1 

𝑥𝑥2 
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SOM training example:  
Move selected neurons towards observation 

𝑥𝑥1 

𝑥𝑥2 
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SOM training example:  
Observe next point 

𝑥𝑥1 

𝑥𝑥2 
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SOM training example:  
After many iterations 

𝑥𝑥1 

𝑥𝑥2 
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CSE 5526: Introduction to Neural Networks 

Hopfield networks 
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Hopfield networks are unsupervised models 
that relate new observations to “memories” 

• Store a set of “fundamental memories” 
{𝛏𝛏1, 𝛏𝛏2, … , 𝛏𝛏𝑀𝑀}  

• So that when presented with a new pattern 𝐱𝐱 
• The system outputs the stored memory that is most 

similar to 𝐱𝐱 
• Is that possible to implement as a neural network? 

• Can it be trained to remember any pattern? 
• How many can it store at once? 
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State of each neuron defines the “state space” 

• The network is in state 𝒙𝒙𝑡𝑡 at time 𝑡𝑡  
• The state of the network evolves according to 

𝒙𝒙𝑡𝑡+1 = 𝜑𝜑(𝑊𝑊𝒙𝒙𝑡𝑡 + 𝒃𝒃) 
• Where we set 𝒃𝒃 = 0 without loss of generality 

• {𝒙𝒙1, 𝒙𝒙2, … , 𝒙𝒙𝑡𝑡} is called a state trajectory 
• Goal: set 𝑊𝑊 so that state trajectory of corrupted 

memory 𝝃𝝃𝑖𝑖 + Δ converges to true memory 𝝃𝝃𝑖𝑖 
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One-shot storage phase uses Hebbian learning 

• Hopfield nets set 𝑊𝑊 using the outer-product rule 
• For synchronous updates, with 𝑁𝑁 bits 

𝑊𝑊𝑠𝑠 =
1
𝑁𝑁
� 𝝃𝝃𝜇𝜇𝝃𝝃𝜇𝜇𝑇𝑇
𝑀𝑀

𝜇𝜇=1

 

• Easier for proving stability of memories 
• For asynchronous updates, enforce 𝑊𝑊𝑖𝑖𝑖𝑖 = 0 

𝑊𝑊𝑎𝑎 =
1
𝑁𝑁
�𝝃𝝃𝜇𝜇𝝃𝝃𝜇𝜇𝑇𝑇 − 𝐼𝐼
𝑀𝑀

𝜇𝜇=1

 

• Easier for proving energy minimization 
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Retrieval phase 

• Play out dynamics 𝒙𝒙𝑡𝑡+1 = 𝜑𝜑(𝑊𝑊𝒙𝒙𝑡𝑡) 
• Until reaching a stable state 𝒙𝒙𝑡𝑡+1 = 𝒙𝒙𝑡𝑡 
• If argument to 𝜑𝜑 ⋅  is 0, neuron stays in previous state 

– Leads to symmetric flow diagrams 

• Synchronous updates update all bits at once 
• Easier for proving stability of memories 

• Asynchronous updates update a random bit at a time 
• Easier for proving energy minimization 
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Memory capacity for a single bit: 
Prob of error is defined by amount of cross-talk 

• Define, for synchronous updates and 𝑊𝑊𝑠𝑠 

𝐶𝐶𝑗𝑗𝜗𝜗 = −𝜉𝜉𝜗𝜗,𝑗𝑗�� 𝜉𝜉𝜇𝜇,𝑗𝑗𝜉𝜉𝜇𝜇,𝑖𝑖𝜉𝜉𝜗𝜗,𝑖𝑖 
𝜇𝜇≠𝜗𝜗𝑖𝑖

 

• Amount cross-talk pushes bit 𝑗𝑗 in the wrong 
direction 

𝐶𝐶𝑗𝑗𝜗𝜗 < 0    ⇒     stable 
0 ≤ 𝐶𝐶𝑗𝑗𝜗𝜗 < 𝑁𝑁    ⇒     stable 
𝐶𝐶𝑗𝑗𝜗𝜗 > 𝑁𝑁    ⇒     unstable 
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Capacity: Lower error prob requires smaller 𝑀𝑀 

𝑃𝑃error 𝑴𝑴max/𝑵𝑵 
0.001 0.105 

0.0036 0.138 
0.01 0.185 
0.05 0.37 
0.1 0.61 

• 𝑃𝑃error = 1
2

1 − erf 𝑁𝑁
2𝑀𝑀

 

• So 𝑃𝑃error < 0.01 ⇒ 𝑀𝑀max = 0.185𝑁𝑁, for one bit 
• If we want perfect retrieval for 𝑁𝑁 bits with prob 0.99 

𝑀𝑀max =
𝑁𝑁

2log 𝑁𝑁
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Energy function (Lyapunov function) 

• The existence of an energy (Lyapunov) function for 
a dynamical system ensures its stability 

• The energy function for the Hopfield net is 

𝐸𝐸 𝐱𝐱 = −
1
2
��𝑤𝑤𝑗𝑗𝑗𝑗𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗

𝑗𝑗𝑖𝑖

= −
1
2
𝒙𝒙𝑇𝑇𝑊𝑊𝒙𝒙 

• Theorem: Given symmetric weights, 𝑤𝑤𝑗𝑗𝑗𝑗 = 𝑤𝑤𝑖𝑖𝑗𝑗, the 
energy function does not increase as the Hopfield 
net evolves asynchronously 
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Spurious states 

• Not all local minima (stable states) correspond to 
fundamental memories.  

• Other attractors: 
• −𝛏𝛏 𝜇𝜇 

• linear combination of odd number of memories 
• other uncorrelated patterns 

• Such attractors are called spurious states 
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CSE 5526: Introduction to Neural Networks 

Boltzmann machines 
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Boltzmann machines are  
unsupervised probability models 

• The primary goal of Boltzmann machine learning is 
to produce a network that models the probability 
distribution of observed data (at visible neurons) 
• Such a net can be used for pattern completion, as a part of 

an associative memory, etc. 
• What do we want to do with it? 

• Compute the probability of a new observation 
• Learn parameters of the model from data 
• Estimate likely values completing partial observations 
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Boltzmann machines have  
the same energy function as Hopfield networks 

• Because of symmetric connections, the energy 
function of neuron configuration 𝐱𝐱 is: 
 

𝐸𝐸 𝐱𝐱 = −
1
2
��𝑤𝑤𝑗𝑗𝑗𝑗𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗

𝑗𝑗𝑖𝑖

= −
1
2
𝐱𝐱𝑇𝑇𝑊𝑊𝐱𝐱 

 
• Can we start there and derive a probability 

distribution over configurations? 
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Boltzmann machines are  
a stochastic extension of Hopfield networks 
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The Boltzmann-Gibbs distribution  
defines probabilities from energies 

• Consider a physical system with many states.  
• Let 𝑝𝑝𝑖𝑖 denote the probability of occurrence of state 𝑖𝑖 
• Let 𝐸𝐸𝑖𝑖 denote the energy of state 𝑖𝑖 

• From statistical mechanics, when the system is in 
thermal equilibrium, it satisfies 

𝑝𝑝𝑖𝑖 =
1
𝑍𝑍

exp −
𝐸𝐸𝑖𝑖
𝑇𝑇

    where     𝑍𝑍 = �exp −
𝐸𝐸𝑖𝑖
𝑇𝑇

 
𝑖𝑖

 

• Z is called the partition function, and 𝑇𝑇 is called the 
temperature 

• The Boltzmann-Gibbs distribution 
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Remarks 

• Lower energy states have higher probability of 
occurrences 

• As 𝑇𝑇 decreases, the probability is concentrated on a 
small subset of low energy states 
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Boltzmann-Gibbs distribution applied to 
Hopfield network energy function 

𝑝𝑝 𝒙𝒙 =
1
𝑍𝑍

exp −
1
𝑇𝑇
𝐸𝐸 𝒙𝒙 =

1
𝑍𝑍

exp
1

2𝑇𝑇
𝒙𝒙𝑇𝑇𝑊𝑊𝒙𝒙  

• Partition function For 𝑁𝑁 neurons, involves 2𝑁𝑁 terms 

𝑍𝑍 = �exp −
1
𝑇𝑇
𝐸𝐸 𝒙𝒙

𝒙𝒙

 

• Marginal over 𝐻𝐻 of the neurons Involves 2𝐻𝐻 terms 

𝑝𝑝 𝒙𝒙𝛼𝛼 = �𝑝𝑝 𝒙𝒙𝛼𝛼, 𝒙𝒙𝛽𝛽
𝒙𝒙𝛽𝛽
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Learning can be performed by gradient descent 

• The objective of Boltzmann machine learning is to 
maximize the likelihood of the visible units taking 
on training patterns by adjusting W 

• Assuming that each pattern of the training sample is 
statistically independent, the log probability of the 
training sample is: 

𝐿𝐿 𝐰𝐰 = log�𝑃𝑃(𝐱𝐱𝛼𝛼)
𝐱𝐱𝛼𝛼

= �log 𝑃𝑃(𝐱𝐱𝛼𝛼)
𝐱𝐱𝛼𝛼
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Gradient of log likelihood of data has two terms 

𝜕𝜕𝜕𝜕(𝐰𝐰)
𝜕𝜕𝑤𝑤𝑗𝑗𝑗𝑗

=
1
𝑇𝑇
𝜌𝜌𝑗𝑗𝑗𝑗+ − 𝜌𝜌𝑗𝑗𝑗𝑗−  

• Where 
𝜌𝜌𝑗𝑗𝑗𝑗+ = ∑ ∑ 𝑃𝑃 𝐱𝐱𝛽𝛽 𝐱𝐱𝛼𝛼 𝑥𝑥𝑗𝑗𝑥𝑥𝑖𝑖𝐱𝐱𝛽𝛽𝐱𝐱𝛼𝛼 = ∑ 𝐸𝐸𝒙𝒙𝛽𝛽|𝒙𝒙𝛼𝛼 𝑥𝑥𝑗𝑗𝑥𝑥𝑖𝑖𝛼𝛼  
• is the mean correlation between neurons i and j when the 

visible units are “clamped” to 𝐱𝐱𝛼𝛼 

• And 𝜌𝜌𝑗𝑗𝑗𝑗− = ∑ 𝑃𝑃 𝐱𝐱 𝑥𝑥𝑗𝑗𝑥𝑥𝑖𝑖𝐱𝐱 = 𝐸𝐸𝒙𝒙𝛽𝛽,𝒙𝒙𝛼𝛼 𝑥𝑥𝑗𝑗𝑥𝑥𝑖𝑖  
• is the mean correlation between i and j when the machine 

operates without “clamping” 
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Full Boltzmann machine training algorithm 

• The entire algorithm consists of the following 
nested loops: 
1. Loop over all training data points, accumulating 

gradient of each weight 
2. For each data point, compute expectation 𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗  with 𝐱𝐱𝛼𝛼 

clamped and free 
3. Compute expectations using simulated annealing, 

gradually decreasing T 
4. For each T, sample the state of the entire net a number 

of times using Gibbs sampling 
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CSE 5526: Introduction to Neural Networks 

Deep Belief Networks 
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Convolutional networks are deep networks  
that are feasible to train 

• Neural network that learns “receptive fields” 
• And applies them across different spatial positions 

• Weight matrices are very constrained 
• Train using standard backprop 
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Another way to train deep neural nets  
is to use unsupervised pre-training 

• Build training up from the bottom 
• Train a shallow model to describe the data 
• Treat that as a fixed transformation 
• Train another shallow model on transformed data 
• Etc. 

• No long-distance gradients necessary 
• Initialize a deep neural network with these params 
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Restricted Boltzmann machines  
can be used as building blocks in this way 

• A restricted Boltzmann machine (RBM) is a 
Boltzmann machine with one visible layer and one 
hidden layer, and no connection within each layer 
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RBM conditionals are easy to compute 

• The energy function is: 

𝐸𝐸 𝐯𝐯, 𝐡𝐡 = −
1
2
��𝑤𝑤𝑗𝑗𝑗𝑗𝑣𝑣𝑗𝑗

𝑗𝑗𝑖𝑖

ℎ𝑖𝑖 = −
1
2
𝒗𝒗𝑇𝑇𝑊𝑊𝒉𝒉 

• So 𝑝𝑝 𝒗𝒗 𝒉𝒉 , 𝑝𝑝 𝒉𝒉 𝒗𝒗  are now easy to compute 
• No Gibbs sampling necessary 

𝑝𝑝 𝒉𝒉 𝒗𝒗 = exp
1
2
𝒗𝒗𝑇𝑇𝑊𝑊𝒉𝒉 �exp

1
2
𝒗𝒗𝑇𝑇𝑊𝑊𝒉𝒉

𝒉𝒉

−1

 

�exp
1
2
𝒗𝒗𝑇𝑇𝑊𝑊𝒉𝒉

𝒉𝒉

= ��exp
1
2
𝒗𝒗𝑇𝑇𝑊𝑊𝑖𝑖⋅ℎ𝑖𝑖

ℎ𝑖𝑖𝑖𝑖
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Training a general deep net layer-by-layer 

1. First learn 𝑊𝑊 with all weights tied 
2. Freeze (fix) 𝑊𝑊 as 𝑊𝑊0, which represents the 

learned weights for the first hidden layer 
3. Learn the weights for the second hidden layer by 

treating responses of the first hidden layer to the 
training data as “input data” 

4. Freeze the weights for the second hidden layer 
5. Repeat steps 3-4 as many times as the prescribed 

number of hidden layers 
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Thus an infinite belief network can be 
implemented with finite computation 

𝐻𝐻0 

𝑉𝑉0 
𝑊𝑊 𝑊𝑊𝑇𝑇 
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Thus an infinite belief network can be 
implemented with finite computation 

𝑉𝑉1 

𝐻𝐻0 

𝑉𝑉0 
𝑊𝑊0 

𝑊𝑊 𝑊𝑊𝑇𝑇 
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Thus an infinite belief network can be 
implemented with finite computation 

𝐻𝐻1 

𝑉𝑉1 

𝐻𝐻0 

𝑉𝑉0 
𝑊𝑊0 

𝑊𝑊1 

𝑊𝑊 𝑊𝑊𝑇𝑇 
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Thus an infinite belief network can be 
implemented with finite computation 

𝑉𝑉2 

𝐻𝐻1 

𝑉𝑉1 

𝐻𝐻0 

𝑉𝑉0 
𝑊𝑊0 

𝑊𝑊1 

𝑊𝑊2 

𝑊𝑊 𝑊𝑊𝑇𝑇 
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Thus an infinite belief network can be 
implemented with finite computation 

𝐻𝐻2 

𝑉𝑉2 

𝐻𝐻1 

𝑉𝑉1 

𝐻𝐻0 

𝑉𝑉0 
𝑊𝑊0 

𝑊𝑊1 

𝑊𝑊2 

𝑊𝑊3 

𝑊𝑊  𝑊𝑊𝑇𝑇  
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Remarks (Hinton, Osindero, Yeh, 2006) 

• As the number of layers increases, the maximum 
likelihood approximation of the training data 
improves 

• For discriminative training (e.g. for classification) 
we add an output layer on top of the learned 
generative model, and train the entire net by a 
discriminative algorithm 

• Although much faster than Boltzmann machines 
(e.g. no simulated annealing), pretraining is still 
quite slow, and involves a lot of design as for MLP 
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DBNs have been successfully applied  
to an increasing number of tasks 

• Ex: MNIST handwritten digit recognition 
• A DBN with two hidden layers achieves 1.25% 

error rate, vs. 1.4% for SVM and 1.5% for MLP 
• DBN with “gentle” discriminative fine-tuning, 1.15% 

• Great example animations 
• http://www.cs.toronto.edu/~hinton/digits.html  

http://www.cs.toronto.edu/%7Ehinton/digits.html
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A neural model of digit recognition 

2000 top-level neurons 

500 neurons 

500 neurons  

28 x 28 
pixel     
image  

10 label 
neurons  

Slide from Hinton 
MSR Talk 
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CSE 5526: Introduction to Neural Networks 

Deep Neural Networks 
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From DBNs to DNNs 

• Last lecture described Deep Belief Networks (DBN) 
• Unsupervised, generative, deep models of data 

• In practice, DBNs are most useful as initialization 
for Deep Neural Networks (DNN) 
• Supervised, discriminative, deep function approximators 
• Both have the same structure 
• Weights can be transferred directly, with care 

• This lecture covers some DNN details / tricks and 
autoencoders, another useful unsupervised approach 
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Autoencoders are unsupervised,  
deterministic networks 

• Function 𝑓𝑓(𝒙𝒙) trained to predict 𝒙𝒙 
• Can be a standard MLP: 𝑓𝑓 𝒙𝒙 = 𝜑𝜑 𝑊𝑊1𝜑𝜑 𝑊𝑊0𝑥𝑥  
• Typically, parameters are “tied” so 𝑊𝑊1 = 𝑊𝑊0

𝑇𝑇 
• Data 𝒙𝒙 provides its own “supervision” signal 
• Some limitation prevents the network from learning 

the identity function 
• Hidden state of smaller dimension than 𝒙𝒙 
• Noisy input (denoising autoencoder) 
• Penalize uninteresting solutions (contractive autoencoder) 
• Etc. 
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Autoencoder architecture 

𝒙𝒙 

𝒉𝒉 

𝒙𝒙 

𝑊𝑊 

𝑊𝑊𝑇𝑇 
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Autoencoders can also be stacked  
to initialize a deep neural network 

𝒉𝒉1 

𝒙𝒙 

𝑊𝑊1 

𝑊𝑊1
𝑇𝑇 

𝒙𝒙� 



90 CSE 5526: Review 2 

Autoencoders can also be stacked  
to initialize a deep neural network 

𝒉𝒉1 

𝒙𝒙 

𝑊𝑊1 

𝑊𝑊2 

𝒉𝒉2 

𝒉𝒉�1 

𝑊𝑊2
𝑇𝑇 
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Autoencoders can also be stacked  
to initialize a deep neural network 

𝒉𝒉1 

𝒙𝒙 

𝑊𝑊1 

𝑊𝑊2 

𝒉𝒉2 

𝒉𝒉3 

𝑊𝑊3 

𝑊𝑊3
𝑇𝑇 

𝒉𝒉�2 
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Each type of data leads to a particular error 
function and a particular output unit type 

• Constraints lead to error functions  
• From negative log likelihood of distributions 

• Error functions lead to output non-linearities 
• That put the gradients in a particularly nice form 

𝛻𝛻𝐸𝐸(𝒘𝒘) = −� 𝑑𝑑𝑘𝑘 − 𝑦𝑦𝑝𝑝𝑝𝑝 𝒂𝒂𝑝𝑝
𝑝𝑝,𝑘𝑘

 

• In general: distributions in the exponential family 
work nicely with output units in the form of the 
“canonical link function” 
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Each type of data leads to a particular error 
function and a particular output unit type 

Data type Error function 𝐸𝐸(𝒘𝒘) Output unit 𝑦𝑦𝑘𝑘 

Unconstrained 1
2
� 𝑑𝑑𝑝𝑝𝑝𝑝 − 𝑦𝑦𝑘𝑘

2

𝑝𝑝,𝑘𝑘

 𝒘𝒘𝑘𝑘
𝑇𝑇𝒂𝒂 

Binary (Bernoulli) −�𝑑𝑑𝑘𝑘 log 𝑦𝑦𝑝𝑝𝑝𝑝 + 1 − 𝑑𝑑𝑘𝑘 log(1 − 𝑦𝑦𝑝𝑝𝑝𝑝)
𝑝𝑝,𝑘𝑘

 

 

1
1 + exp −𝒘𝒘𝑘𝑘

𝑇𝑇𝒂𝒂
 

Multinomial −�𝑑𝑑𝑘𝑘 log 𝑦𝑦𝑝𝑝𝑝𝑝
𝑝𝑝,𝑘𝑘

 exp (−𝒘𝒘𝑘𝑘
𝑇𝑇𝒂𝒂)

∑ exp −𝒘𝒘𝑘𝑘′
𝑇𝑇 𝒂𝒂𝑘𝑘𝑘
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