CSE 5526: Introduction to Neural Networks ### **Second Half Review** #### Main topics covered in first half of class - McCulloch-Pitts neurons - Designing networks by hand - Training using the perceptron algorithm - Linear regression - Closed-form solution - Training using gradient descent - Multi-layer perceptrons - Backpropagation training algorithm - Generalization, over-fitting, under-fitting, learning curves - Radial basis function networks #### Main topics covered in second half of class - Support vector machines - Lagrange multipliers - Maximum margin formulation, primal and dual - Kernels - Training SVMs on non-separable data (slack variables) - Unsupervised learning - Self-organizing maps - Hopfield networks - (Restricted) Boltzmann machines - Deep belief networks and deep neural networks #### **CSE 5526: Introduction to Neural Networks** # Support Vector Machines (SVM) Depends on initialization and ordering of training points # But the maximum margin hyperplane generalizes the best to new data According to computational/statistical learning theory # The maximum margin only depends on certain points, the support vectors ### The maximum margin only depends on certain points, the support vectors # The maximum margin only depends on certain points, the support vectors # w is perpendicular to the hyperplane,b defines its distance from the origin # The distance from point x to the hyperplane is y(x)/||w|| # The maximum margin hyperplane is farthest from all of the data points # Maximum margin constrained optimization problem • Which is equivalent to $\arg\min_{\pmb{w},b} \frac{1}{2} \|\pmb{w}\|^2 \text{ subject to } d_p \big(\pmb{w}^T \pmb{x}_p + b \big) \geq 1$ - This is a well studied type of problem - A quadratic program with linear inequality constraints # Detour: Lagrange multipliers solve constrained optimization problems - Want to maximize a function $f(x_1, x_2)$ - Subject to the equality constraint $g(x_1, x_2) = 0$ - Could solve $g(x_1, x_2) = 0$ for x_1 in terms of x_2 - But that is hard to do in general (i.e., on computers) - Or could use Lagrange multipliers - Which are easier to use in general (i.e., on computers) ### Lagrange multipliers with general x - In general, we can write $\max_{\mathbf{x}} f(\mathbf{x})$ subject to $g(\mathbf{x}) = 0$ - Constraint g(x) = 0 defines a D 1 dimensional surface for D dimensional x # Gradients of *g* and *f* are orthogonal to surface at solution point # Gradients of g and f are orthogonal to surface at maximum of f - For g because for all points on the surface g(x) = 0 - Meaning that the directional derivative along it is 0 - So the gradient must be perpendicular to it - For f because if it wasn't, you could move along the surface in the direction of the gradient to find a better maximum of f - Thus ∇f and ∇g are (anti-)parallel - And there must exist a scalar λ such that $$\nabla f + \lambda \nabla g = 0$$ # The Lagrangian function captures the constraints on *x* and on the gradients $$L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda g(\mathbf{x})$$ - Setting gradient of L with respect to x to 0 gives $\nabla f + \lambda \nabla g = 0$ - Setting partial of L with respect to λ to 0 gives g(x) = 0 - Thus stationary points of *L* solve the constrained optimization problem # Lagrange multipliers can also be used with inequality constraints $g(x) \ge 0$ # Back to SVMs: Maximum margin solution is a fixed point of the Lagrangian function - Recall, the maximum margin hyperplane is $\arg\min_{\pmb{w},b} \frac{1}{2} \|\pmb{w}\|^2 \text{ subject to } d_p \big(\pmb{w}^T \pmb{x}_p + b \big) \geq 1$ - Minimization of a quadratic function subject to multiple linear inequality constraints - Will use Lagrange multipliers, a_p , to write Lagrangian function $$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{p} a_p (d_p (\mathbf{w}^T \mathbf{x}_p + b) - 1)$$ • Note that x_p and d_p are fixed for the optimization #### Dual form of Lagrangian eliminates w and b • Dual form of Lagrangian, maximize: $$\tilde{L}(\boldsymbol{a}) = -\frac{1}{2} \sum_{p} \sum_{q} a_{p} a_{q} d_{p} d_{q} \boldsymbol{x}_{p}^{T} \boldsymbol{x}_{q} + \sum_{p} a_{p}$$ Subject to the constraints $$a_p \ge 0 \ \forall p \qquad \sum_p a_p d_p = 0$$ • Another quadratic programming problem subject to linear inequality and equality constraints ### Classify new points using y(x) Actual prediction function is still $$y(x) = w^T x + b$$ • Get w from primal Lagrangian $$\mathbf{w} = \sum_{p} a_{p} d_{p} \mathbf{x}_{p}$$ • Will discuss *b* shortly, so $$y(\mathbf{x}) = \sum_{p} a_{p} d_{p} \mathbf{x}_{p}^{T} \mathbf{x} + b$$ ### Classify new points using y(x), with kernel - With a kernel, $\mathbf{w}^T = \sum_p a_p d_p \phi(\mathbf{x}_p)$ - Actual prediction function is $$y(\mathbf{x}) = \mathbf{w}^{T} \phi(\mathbf{x}) + b$$ $$= \sum_{p} a_{p} d_{p} \phi^{T}(\mathbf{x}_{p}) \phi(\mathbf{x}) + b$$ $$= \sum_{p} a_{p} d_{p} k(\mathbf{x}_{p}, \mathbf{x}) + b$$ - In practice, save all x_p with $a_p > 0$ - And compute $k(x_p, x)$ at test time ### Summary so far - Finding the maximum margin hyperplane has been formulated as a constrained quadratic program - Convex problem, well studied, easy conceptually to solve - Can be solved in the primal or dual formulation - Dual formulation permits the use of kernel functions - Only some data points contribute to the solution - The support vectors - So far, only applies to linearly separable data ### Kernels are generalizations of inner products • A kernel is a function of two data points such that $k(x, x') = \phi^T(x)\phi(x')$ For some function $\phi(x)$ - It is therefore symmetric: k(x, x') = k(x', x) - Can compute k(x, x') from an explicit $\phi(x)$ - Or prove that k(x, x') corresponds to some $\phi(x)$ - Never need to actually compute $\phi(x)$ #### Kernelized SVM looks a lot like an RBF net #### Kernel matrix • The matrix $$\mathbf{K} = \begin{bmatrix} k(\mathbf{x}_1, \mathbf{x}_1) & \cdots & k(\mathbf{x}_1, \mathbf{x}_N) \\ \vdots & \vdots & \ddots & \vdots \\ k(\mathbf{x}_N, \mathbf{x}_1) & \vdots & k(\mathbf{x}_N, \mathbf{x}_N) \end{bmatrix}$$ is called the kernel matrix, or the Gram matrix. • **K** is positive semidefinite # Mercer's theorem relates kernel functions and inner product spaces • Suppose that for all finite sets of points $\{x_p\}_{p=1}^N$ and real numbers $\{a\}_{p=1}^\infty$ $$\sum_{i,j} a_j a_i k(\mathbf{x}_i, \mathbf{x}_j) \ge 0$$ - Then **K** is called a positive semidefinite kernel - And can be written as $$k(\mathbf{x}, \mathbf{x}') = \phi^T(\mathbf{x})\phi(\mathbf{x}')$$ • For some vector-valued function $\phi(x)$ #### Some popular kernels - Polynomial kernel, parameters c and p $k(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + c)^p$ - Finite-dimensional $\phi(x)$ can be explicitly computed - Gaussian or RBF kernel, parameter σ $$k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{1}{2\sigma} \|\mathbf{x} - \mathbf{x}'\|^2\right)$$ - Infinite-dimensional $\phi(x)$ - Equivalent to RBF network, but more principled way of finding centers ### Some popular kernels - Hypebolic tangent kernel, parameters β_1 and β_2 $k(\mathbf{x}, \mathbf{x}') = \tanh(\beta_1 \mathbf{x}^T \mathbf{x}' + \beta_2)$ - Only positive semidefinite for some values of β_1 and β_2 - Inspired by neural networks, but more principled way of selecting number of hidden units - String kernels or other structure kernels - Can prove that they are positive definite - Computed between non-numeric items - Avoid converting to fixed-length feature vectors #### Example: polynomial kernel - Polynomial kernel in 2D, c = 1, p = 2 $k(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + 1)^2 = (x_1 x_1' + x_2 x_2' + 1)^2$ $= x_1^2 x_1'^2 + x_2^2 x_2'^2 + 2x_1 x_1' x_2 x_2' + 2x_1 x_1' + 2x_2 x_2' + 1$ - If we define $$\phi(\mathbf{x}) = \left[x_1^2, x_2^2, \sqrt{2}x_1x_2, \sqrt{2}x_1, \sqrt{2}x_2, 1\right]^T$$ • Then $k(\mathbf{x}, \mathbf{x}') = \phi^T(\mathbf{x})\phi(\mathbf{x}')$ ### What if the classes overlap? - Allow mis-classifications, but penalize them - in proportion to distance on the wrong side of the margin - Add to existing cost, minimize sum of the two - Introduce "slack variables" $\xi_p \ge 0$ - one per training point - $\xi_p = \max(1 d_p y(\mathbf{x}_p), 0)$ - Interpretation - $\xi_p = 0$ for points on the correct side of the margin - $0 < \xi_p < 1$ for correctly classified points within margin - $\xi_p > 1$ for mis-classified points ## Meaning of ξ_p #### Incorporate slack variables in optimization • New problem: $$\operatorname{argmin}_{w,b} \frac{1}{2} \|w\|^2 + C \sum_{p} \xi_p$$ Subject to $d_p y(x_p) \ge 1 - \xi_p$ - So constraint $d_p y(x_p) \ge 1$ has been relaxed - But now minimize the sum of the ξ_p s too - C controls trade-off between margin and slack - As $C \to \infty$, return to SVM for separable data #### **CSE 5526: Introduction to Neural Networks** # Unsupervised learning and Self-organizing maps #### Types of learning - Supervised learning: Detailed desired output is provided externally - Reinforcement learning: Desired end state of an interaction with environment is provided - Learn best actions to take to get there - Unsupervised learning: Discover structure in data - E.g., competitive learning and self organization #### Unsupervised learning - Goal: learn the distribution of a set of observations - Some observations are a better "fit" than others - Self-organizing maps create spatially coherent internal representations - Hopfield networks store a set of observations - Deterministic, non-linear dynamical system - Boltzmann machines can behave similarly - Stochastic, non-linear dynamical system - Boltzmann machines with hidden units have a much greater capacity for learning the data distribution # Winner-take-all (WTA) networks implement competitive dynamics - Recurrent neural network - Each neuron excited by input - Recurrent dynamics eventually lead to one "winner" - Update winning neuron to be more sensitive to that input - Similar to *K*-means algorithm - Two different architectures - Global inhibition - Mutual inhibition ## A self-organizing map is a WTA network with a notion of distance between neurons ## A self-organizing map is a WTA network with a notion of distance between neurons - Each node in the SOM has a prototype vector - Computes activation based on distance to an input - What it's looking for or excited by - Each node in the SOM has a set of neighbors - Or a distance function to the rest of the neurons - Learning in the SOM adjusts the prototypes - So that neurons that are "close" to each other have prototypes that are "close" to each other - Learns a nonlinear dimensionality reduction #### SOM training - Activate neurons based on distance to inputs - Find winner, the neuron most activated - Update neurons based on distance to winner - Winner's prototype is updated to be closer to input - Neighbors' prototypes are updated less - Far away neurons are not updated - No global objective being optimized - But interesting behavior in practice ### SOM training example: Initial configuration of neuron prototypes ### SOM training example: Observe point #### SOM training example: Find closest neuron to observation ### SOM training example: Activate neurons close **in grid** to that neuron # SOM training example: Move selected neurons towards observation ### SOM training example: Observe next point ### SOM training example: After many iterations #### **CSE 5526: Introduction to Neural Networks** ### Hopfield networks # Hopfield networks are unsupervised models that relate new observations to "memories" - Store a set of "fundamental memories" $\{\xi_1, \xi_2, ..., \xi_M\}$ - So that when presented with a new pattern **x** - The system outputs the stored memory that is most similar to **x** - Is that possible to implement as a neural network? - Can it be trained to remember any pattern? - How many can it store at once? #### State of each neuron defines the "state space" - The network is in state x_t at time t - The state of the network evolves according to $x_{t+1} = \varphi(Wx_t + b)$ - Where we set b = 0 without loss of generality - $\{x_1, x_2, ..., x_t\}$ is called a state trajectory - Goal: set W so that state trajectory of corrupted memory $\xi_i + \Delta$ converges to true memory ξ_i #### One-shot storage phase uses Hebbian learning - Hopfield nets set W using the outer-product rule - For synchronous updates, with *N* bits $$W^{s} = \frac{1}{N} \sum_{\mu=1}^{M} \boldsymbol{\xi}_{\mu} \boldsymbol{\xi}_{\mu}^{T}$$ - Easier for proving stability of memories - For asynchronous updates, enforce $W_{ii} = 0$ $$W^{a} = \frac{1}{N} \sum_{\mu=1}^{M} \xi_{\mu} \xi_{\mu}^{T} - I$$ Easier for proving energy minimization #### Retrieval phase - Play out dynamics $x_{t+1} = \varphi(Wx_t)$ - Until reaching a stable state $x_{t+1} = x_t$ - If argument to $\varphi(\cdot)$ is 0, neuron stays in previous state - Leads to symmetric flow diagrams - Synchronous updates update all bits at once - Easier for proving stability of memories - Asynchronous updates update a random bit at a time - Easier for proving energy minimization ### Memory capacity for a single bit: Prob of error is defined by amount of cross-talk • Define, for synchronous updates and W^s $$C_j^{\vartheta} = -\xi_{\vartheta,j} \sum_{i} \sum_{\mu \neq \vartheta} \xi_{\mu,j} \xi_{\mu,i} \xi_{\vartheta,i}$$ • Amount cross-talk pushes bit *j* in the wrong direction $$C_j^{\vartheta} < 0 \implies \text{stable}$$ $0 \le C_j^{\vartheta} < N \implies \text{stable}$ $C_j^{\vartheta} > N \implies \text{unstable}$ #### Capacity: Lower error prob requires smaller M | $P_{f error}$ | $M_{ m max}/N$ | |---------------|----------------| | 0.001 | 0.105 | | 0.0036 | 0.138 | | 0.01 | 0.185 | | 0.05 | 0.37 | | 0.1 | 0.61 | • $$P_{\text{error}} = \frac{1}{2} \left(1 - \text{erf} \left(\sqrt{\frac{N}{2M}} \right) \right)$$ - So $P_{\text{error}} < 0.01 \Rightarrow M_{\text{max}} = 0.185N$, for one bit - If we want perfect retrieval for *N* bits with prob 0.99 $$M_{\text{max}} = \frac{N}{2\log N}$$ #### Energy function (Lyapunov function) - The existence of an energy (Lyapunov) function for a dynamical system ensures its stability - The energy function for the Hopfield net is $$E(\mathbf{x}) = -\frac{1}{2} \sum_{i} \sum_{j} w_{ji} x_i x_j = -\frac{1}{2} \mathbf{x}^T W \mathbf{x}$$ • **Theorem**: Given symmetric weights, $w_{ji} = w_{ij}$, the energy function does not increase as the Hopfield net evolves asynchronously #### Spurious states - Not all local minima (stable states) correspond to fundamental memories. - Other attractors: - $-\xi_{\mu}$ - linear combination of odd number of memories - other uncorrelated patterns - Such attractors are called spurious states #### **CSE 5526: Introduction to Neural Networks** ### Boltzmann machines # Boltzmann machines are unsupervised probability models - The primary goal of Boltzmann machine learning is to produce a network that models the probability distribution of observed data (at visible neurons) - Such a net can be used for pattern completion, as a part of an associative memory, etc. - What do we want to do with it? - Compute the probability of a new observation - Learn parameters of the model from data - Estimate likely values completing partial observations # Boltzmann machines have the same energy function as Hopfield networks • Because of symmetric connections, the energy function of neuron configuration **x** is: $$E(\mathbf{x}) = -\frac{1}{2} \sum_{i} \sum_{j} w_{ji} x_i x_j = -\frac{1}{2} \mathbf{x}^T W \mathbf{x}$$ • Can we start there and derive a probability distribution over configurations? # Boltzmann machines are a stochastic extension of Hopfield networks # The Boltzmann-Gibbs distribution defines probabilities from energies - Consider a physical system with many states. - Let p_i denote the probability of occurrence of state i - Let E_i denote the energy of state i - From statistical mechanics, when the system is in thermal equilibrium, it satisfies $$p_i = \frac{1}{Z} \exp\left(-\frac{E_i}{T}\right)$$ where $Z = \sum_i \exp\left(-\frac{E_i}{T}\right)$ - Z is called the partition function, and T is called the temperature - The Boltzmann-Gibbs distribution #### Remarks - Lower energy states have higher probability of occurrences - As T decreases, the probability is concentrated on a small subset of low energy states # Boltzmann-Gibbs distribution applied to Hopfield network energy function $$p(\mathbf{x}) = \frac{1}{Z} \exp\left(-\frac{1}{T}E(\mathbf{x})\right) = \frac{1}{Z} \exp\left(\frac{1}{2T}\mathbf{x}^T W \mathbf{x}\right)$$ • Partition function For N neurons, involves 2^N terms $$Z = \sum_{\mathbf{x}} \exp\left(-\frac{1}{T}E(\mathbf{x})\right)$$ • Marginal over H of the neurons Involves 2^H terms $$p(\mathbf{x}_{\alpha}) = \sum_{\mathbf{x}_{\beta}} p(\mathbf{x}_{\alpha}, \mathbf{x}_{\beta})$$ #### Learning can be performed by gradient descent - The objective of Boltzmann machine learning is to maximize the likelihood of the visible units taking on training patterns by adjusting W - Assuming that each pattern of the training sample is statistically independent, the log probability of the training sample is: $$L(\mathbf{w}) = \log \prod_{\mathbf{x}_{\alpha}} P(\mathbf{x}_{\alpha}) = \sum_{\mathbf{x}_{\alpha}} \log P(\mathbf{x}_{\alpha})$$ #### Gradient of log likelihood of data has two terms $$\frac{\partial L(\mathbf{w})}{\partial w_{ji}} = \frac{1}{T} \left(\rho_{ji}^{+} - \rho_{ji}^{-} \right)$$ Where $$\rho_{ji}^{+} = \sum_{\mathbf{x}_{\alpha}} \sum_{\mathbf{x}_{\beta}} P(\mathbf{x}_{\beta} | \mathbf{x}_{\alpha}) x_{j} x_{i} = \sum_{\alpha} E_{\mathbf{x}_{\beta} | \mathbf{x}_{\alpha}} (x_{j} x_{i})$$ - is the mean correlation between neurons i and j when the visible units are "clamped" to \mathbf{x}_{α} - And $\rho_{ji}^- = \sum_{\mathbf{x}} P(\mathbf{x}) x_j x_i = E_{\mathbf{x}_{\beta}, \mathbf{x}_{\alpha}} (x_j x_i)$ - is the mean correlation between *i* and *j* when the machine operates without "clamping" #### Full Boltzmann machine training algorithm - The entire algorithm consists of the following nested loops: - 1. Loop over all training data points, accumulating gradient of each weight - 2. For each data point, compute expectation $\langle x_i x_j \rangle$ with \mathbf{x}_{α} clamped and free - 3. Compute expectations using simulated annealing, gradually decreasing *T* - 4. For each *T*, sample the state of the entire net a number of times using Gibbs sampling #### **CSE 5526: Introduction to Neural Networks** ### Deep Belief Networks ### Convolutional networks are deep networks that are feasible to train - Neural network that learns "receptive fields" - And applies them across different spatial positions - Weight matrices are very constrained - Train using standard backprop # Another way to train deep neural nets is to use unsupervised pre-training - Build training up from the bottom - Train a shallow model to describe the data - Treat that as a fixed transformation - Train another shallow model on transformed data - Etc. - No long-distance gradients necessary - Initialize a deep neural network with these params # Restricted Boltzmann machines can be used as building blocks in this way • A restricted Boltzmann machine (RBM) is a Boltzmann machine with one visible layer and one hidden layer, and no connection within each layer ### RBM conditionals are easy to compute • The energy function is: $$E(\mathbf{v}, \mathbf{h}) = -\frac{1}{2} \sum_{i} \sum_{j} w_{ji} v_{j} h_{i} = -\frac{1}{2} \mathbf{v}^{T} W \mathbf{h}$$ - So p(v|h), p(h|v) are now easy to compute - No Gibbs sampling necessary $$p(\boldsymbol{h}|\boldsymbol{v}) = \exp\left(\frac{1}{2}\boldsymbol{v}^T W \boldsymbol{h}\right) \left(\sum_{\boldsymbol{h}} \exp\left(\frac{1}{2}\boldsymbol{v}^T W \boldsymbol{h}\right)\right)^{-1}$$ $$\sum_{\boldsymbol{h}} \exp\left(\frac{1}{2}\boldsymbol{v}^T W \boldsymbol{h}\right) = \prod_{i} \sum_{h_i} \exp\left(\frac{1}{2}\boldsymbol{v}^T W_{i}.h_{i}\right)$$ ### Training a general deep net layer-by-layer - 1. First learn W with all weights tied - 2. Freeze (fix) W as W^0 , which represents the learned weights for the first hidden layer - 3. Learn the weights for the second hidden layer by treating responses of the first hidden layer to the training data as "input data" - 4. Freeze the weights for the second hidden layer - 5. Repeat steps 3-4 as many times as the prescribed number of hidden layers ### Remarks (Hinton, Osindero, Yeh, 2006) - As the number of layers increases, the maximum likelihood approximation of the training data improves - For discriminative training (e.g. for classification) we add an output layer on top of the learned generative model, and train the entire net by a discriminative algorithm - Although much faster than Boltzmann machines (e.g. no simulated annealing), pretraining is still quite slow, and involves a lot of design as for MLP ### DBNs have been successfully applied to an increasing number of tasks - Ex: MNIST handwritten digit recognition - A DBN with two hidden layers achieves 1.25% error rate, vs. 1.4% for SVM and 1.5% for MLP - DBN with "gentle" discriminative fine-tuning, 1.15% - Great example animations - http://www.cs.toronto.edu/~hinton/digits.html ### A neural model of digit recognition Slide from Hinton MSR Talk #### **CSE 5526: Introduction to Neural Networks** ### Deep Neural Networks #### From DBNs to DNNs - Last lecture described Deep Belief Networks (DBN) - Unsupervised, generative, deep models of data - In practice, DBNs are most useful as initialization for Deep Neural Networks (DNN) - Supervised, discriminative, deep function approximators - Both have the same structure - Weights can be transferred directly, with care - This lecture covers some DNN details / tricks and autoencoders, another useful unsupervised approach ### Autoencoders are unsupervised, deterministic networks - Function f(x) trained to predict x - Can be a standard MLP: $f(x) = \varphi(W_1\varphi(W_0x))$ - Typically, parameters are "tied" so $W_1 = W_0^T$ - Data x provides its own "supervision" signal - Some limitation prevents the network from learning the identity function - Hidden state of smaller dimension than \boldsymbol{x} - Noisy input (denoising autoencoder) - Penalize uninteresting solutions (contractive autoencoder) - Etc. #### Autoencoder architecture ### Autoencoders can also be stacked to initialize a deep neural network ### Autoencoders can also be stacked to initialize a deep neural network ### Autoencoders can also be stacked to initialize a deep neural network # Each type of data leads to a particular error function and a particular output unit type - Constraints lead to error functions - From negative log likelihood of distributions - Error functions lead to output non-linearities - That put the gradients in a particularly nice form $$\nabla E(\mathbf{w}) = -\sum_{p,k} (d_k - y_{pk}) \mathbf{a}_p$$ • In general: distributions in the exponential family work nicely with output units in the form of the "canonical link function" # Each type of data leads to a particular error function and a particular output unit type | Data type | Error function $E(w)$ | Output unit y_k | |--------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------| | Unconstrained | $\frac{1}{2} \sum_{p,k} \left(d_{pk} - y_k \right)^2$ | $\boldsymbol{w}_k^T \boldsymbol{a}$ | | Binary (Bernoulli) | $-\sum_{p,k} d_k \log y_{pk} + (1 - d_k) \log(1 - y_{pk})$ | $\frac{1}{1 + \exp(-\boldsymbol{w}_k^T \boldsymbol{a})}$ | | Multinomial | $-\sum_{p,k}d_k\log y_{pk}$ | $\frac{\exp(-\boldsymbol{w}_k^T\boldsymbol{a})}{\sum_{k'}\exp(-\boldsymbol{w}_{k'}^T\boldsymbol{a})}$ |