
1 CSE 5526: Boltzmann Machines 

CSE 5526: Introduction to Neural Networks 

Boltzmann Machines 
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Boltzmann machines are  
a stochastic extension of Hopfield networks 

• A Boltzmann machine is a stochastic learning 
machine that consists of visible and hidden units 
and symmetric connections 

• The network can be layered and visible units can be 
either “input” or “output” (connections are not 
directed) 

input 

hidden 

visible 
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In general, the network is fully connected 
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Boltzmann machines have  
the same energy function as Hopfield networks 

• Because of symmetric connections, the energy 
function of neuron configuration 𝐱𝐱 is: 
 

𝐸𝐸 𝐱𝐱 = −
1
2
��𝑤𝑤𝑗𝑗𝑗𝑗𝑥𝑥𝑗𝑗𝑥𝑥𝑗𝑗

𝑗𝑗𝑗𝑗

= 𝐱𝐱𝑇𝑇𝑊𝑊𝐱𝐱 

 
• Can we start there and derive a probability 

distribution over configurations? 
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The Boltzmann-Gibbs distribution  
defines probabilities from energies 

• Consider a physical system with many states.  
• Let 𝑝𝑝𝑗𝑗 denote the probability of occurrence of state 𝑖𝑖 
• Let 𝐸𝐸𝑗𝑗 denote the energy of state 𝑖𝑖 

• From statistical mechanics, when the system is in 
thermal equilibrium, it satisfies 

𝑝𝑝𝑗𝑗 =
1
𝑍𝑍

exp −
𝐸𝐸𝑗𝑗
𝑇𝑇

    where     𝑍𝑍 = � exp −
𝐸𝐸𝑗𝑗
𝑇𝑇

 
𝑗𝑗

 

• Z is called the partition function, and 𝑇𝑇 is called the 
temperature 

• The Boltzmann-Gibbs distribution 
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Remarks 

• Lower energy states have higher probability of 
occurrences 

• As 𝑇𝑇 decreases, the probability is concentrated on a 
small subset of low energy states 
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Boltzmann-Gibbs distribution example 

• Consider 𝑬𝑬 = [1, 2, 3] 
• At 𝑇𝑇 = 10, 

• 𝒑𝒑� = exp −𝑬𝑬
𝑇𝑇

= 0.905, 0.819, 0.741  

• 𝑍𝑍 = ∑ 𝑝𝑝�𝑗𝑗𝑗𝑗 = 0.905 + 0.819 + 0.741 = 2.464 

• 𝒑𝒑 = 1
𝑍𝑍
𝒑𝒑� = [0.367, 0.332, 0.301] 
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Boltzmann-Gibbs distribution example 

• Consider 𝑬𝑬 = [1, 2, 3] 
• At 𝑇𝑇 = 1,  

• 𝒑𝒑� = exp −𝑬𝑬
𝑇𝑇

= 0.368, 0.135, 0.050  

• 𝑍𝑍 = ∑ 𝑝𝑝�𝑗𝑗𝑗𝑗 = 0.368 + 0.135 + 0.050 = 0.553 

• 𝒑𝒑 = 1
𝑍𝑍
𝒑𝒑� = [0.665, 0.245, 0.090] 
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Boltzmann-Gibbs distribution example 

• Consider 𝑬𝑬 = [1, 2, 3] 
• At 𝑇𝑇 = 0.1, 

• 𝒑𝒑� = exp −𝑬𝑬
𝑇𝑇

= 4.54 ⋅ 10−5, 2.06 ⋅ 10−9, 9.36 ⋅ 10−14  

• 𝑍𝑍 = ∑ 𝑝𝑝�𝑗𝑗𝑗𝑗 = 4.54 ⋅ 10−5 + 2.06 ⋅ 10−9 + 9.36 ⋅ 10−14 
= 4.54 ⋅ 10−5 

• 𝒑𝒑 = 1
𝑍𝑍
𝒑𝒑� = [0.99995, 4.54 ⋅ 10−5, 2.06 ⋅ 10−9] 
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Boltzmann-Gibbs distribution applied to 
Hopfield network energy function 

𝑝𝑝 𝐱𝐱 =
1
𝑍𝑍

exp −
1
𝑇𝑇
𝐸𝐸 𝐱𝐱 =

1
𝑍𝑍

exp
1

2𝑇𝑇
𝐱𝐱𝑇𝑇𝑊𝑊𝐱𝐱  

• Partition function For 𝑁𝑁 neurons, involves 2𝑁𝑁 terms 

𝑍𝑍 = �𝑝𝑝 𝐱𝐱
𝐱𝐱

 

• Marginal over 𝐻𝐻 of the neurons Involves 2𝐻𝐻 terms 

𝑝𝑝 𝐱𝐱𝛼𝛼 = �𝑝𝑝 𝐱𝐱𝛼𝛼 , 𝐱𝐱𝛽𝛽
𝐱𝐱𝛽𝛽
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Boltzmann machines are  
unsupervised probability models 

• The primary goal of Boltzmann machine learning is 
to produce a network that models the probability 
distribution of observed data (at visible neurons) 
• Such a net can be used for pattern completion, as a part of 

an associative memory, etc. 
• What do we want to do with it? 

• Compute the probability of a new observation 
• Learn parameters of the model from data 
• Estimate likely values completing partial observations 
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Compute the probability of a new observation 

• Divide the entire net into the subset 𝐱𝐱𝛼𝛼 of visible 
units and 𝐱𝐱𝛽𝛽 of hidden units 

• Given parameters 𝑊𝑊, compute likelihood of 
observation 𝐱𝐱𝛼𝛼 

𝑝𝑝 𝐱𝐱𝛼𝛼 = �𝑝𝑝(𝐱𝐱)
𝐱𝐱𝛽𝛽

= �
1
𝑍𝑍

exp −
1
𝑇𝑇
𝐸𝐸 𝐱𝐱

𝐱𝐱𝛽𝛽

 

= �
1
𝑍𝑍

exp
1

2𝑇𝑇
𝐱𝐱𝑇𝑇𝑊𝑊𝐱𝐱

𝐱𝐱𝛽𝛽
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Learning can be performed by gradient descent 

• The objective of Boltzmann machine learning is to 
maximize the likelihood of the visible units taking 
on training patterns by adjusting W 

• Assuming that each pattern of the training sample is 
statistically independent, the log probability of the 
training sample is: 

𝐿𝐿 𝐰𝐰 = log�𝑃𝑃(𝐱𝐱𝛼𝛼)
𝐱𝐱𝛼𝛼

= � log 𝑃𝑃(𝐱𝐱𝛼𝛼)
𝐱𝐱𝛼𝛼

 

 



14 CSE 5526: Boltzmann Machines 

Log likelihood of data has two terms 

𝐿𝐿 𝐰𝐰 = log�𝑃𝑃(𝐱𝐱𝛼𝛼)
𝐱𝐱𝛼𝛼

= � log 𝑃𝑃(𝐱𝐱𝛼𝛼)
𝐱𝐱𝛼𝛼

 

= � log�
1
𝑍𝑍

exp −
𝐸𝐸 𝐱𝐱
𝑇𝑇

𝐱𝐱𝛽𝛽𝐱𝐱𝛼𝛼

 

= � log� exp −
𝐸𝐸 𝐱𝐱
𝑇𝑇

𝐱𝐱𝛽𝛽

− log 𝑍𝑍
𝐱𝐱𝛼𝛼

 

= � log� exp −
𝐸𝐸 𝐱𝐱
𝑇𝑇

𝐱𝐱𝛽𝛽

− log� exp −
𝐸𝐸 𝐱𝐱
𝑇𝑇

𝐱𝐱𝐱𝐱𝛼𝛼
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Gradient of log likelihood of data 

    𝜕𝜕𝜕𝜕(𝐰𝐰)
𝜕𝜕𝑤𝑤𝑗𝑗𝑗𝑗

 

 

= �
𝜕𝜕

𝜕𝜕𝑤𝑤𝑗𝑗𝑗𝑗
log� exp −

𝐸𝐸 𝐱𝐱
𝑇𝑇

𝐱𝐱𝛽𝛽

−
𝜕𝜕

𝜕𝜕𝑤𝑤𝑗𝑗𝑗𝑗
log� exp −

𝐸𝐸 𝐱𝐱
𝑇𝑇

𝐱𝐱𝐱𝐱𝛼𝛼

 

 

= �
− 1
𝑇𝑇∑ exp −𝐸𝐸 𝐱𝐱

𝑇𝑇
𝜕𝜕𝐸𝐸 𝐱𝐱
𝜕𝜕𝑤𝑤𝑗𝑗𝑗𝑗𝐱𝐱𝛽𝛽

∑ exp −𝐸𝐸 𝐱𝐱
𝑇𝑇𝐱𝐱𝛽𝛽

+

1
𝑇𝑇∑ exp −𝐸𝐸 𝐱𝐱

𝑇𝑇
𝜕𝜕𝐸𝐸 𝐱𝐱
𝜕𝜕𝑤𝑤𝑗𝑗𝑗𝑗𝐱𝐱

∑ exp −𝐸𝐸 𝐱𝐱
𝑇𝑇𝐱𝐱𝐱𝐱𝛼𝛼
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Gradient of log likelihood of data 

• Then, since 𝜕𝜕𝜕𝜕(𝐱𝐱)
𝜕𝜕𝑤𝑤𝑗𝑗𝑗𝑗

= −𝑥𝑥𝑗𝑗𝑥𝑥𝑗𝑗 

 

𝜕𝜕𝐿𝐿(𝐰𝐰)
𝜕𝜕𝑤𝑤𝑗𝑗𝑗𝑗

=
1
𝑇𝑇
� �

exp −𝐸𝐸 𝐱𝐱
𝑇𝑇 𝑥𝑥𝑗𝑗𝑥𝑥𝑗𝑗

∑ exp −𝐸𝐸 𝐱𝐱
𝑇𝑇𝐱𝐱𝛽𝛽𝐱𝐱𝛽𝛽

−
∑ exp −𝐸𝐸 𝐱𝐱

𝑇𝑇 𝑥𝑥𝑗𝑗𝑥𝑥𝑗𝑗𝐱𝐱

𝑍𝑍
𝐱𝐱𝛼𝛼

 

 

        =
1
𝑇𝑇

��𝑃𝑃 𝐱𝐱𝛽𝛽 𝐱𝐱𝛼𝛼 𝑥𝑥𝑗𝑗𝑥𝑥𝑗𝑗
𝐱𝐱𝛽𝛽𝐱𝐱𝛼𝛼

−��𝑃𝑃(𝐱𝐱)𝑥𝑥𝑗𝑗𝑥𝑥𝑗𝑗
𝐱𝐱𝐱𝐱𝛼𝛼

 

 
training patterns constant w.r.t. ∑ ∙𝐱𝐱𝛼𝛼   



17 CSE 5526: Boltzmann Machines 

Gradient of log likelihood of data 

𝜕𝜕𝐿𝐿(𝐰𝐰)
𝜕𝜕𝑤𝑤𝑗𝑗𝑗𝑗

=
1
𝑇𝑇
𝜌𝜌𝑗𝑗𝑗𝑗+ − 𝜌𝜌𝑗𝑗𝑗𝑗−  

• Where 
𝜌𝜌𝑗𝑗𝑗𝑗+ = ∑ ∑ 𝑃𝑃 𝐱𝐱𝛽𝛽 𝐱𝐱𝛼𝛼 𝑥𝑥𝑗𝑗𝑥𝑥𝑗𝑗𝐱𝐱𝛽𝛽𝐱𝐱𝛼𝛼 = ∑ 𝐸𝐸𝐱𝐱𝛽𝛽|𝐱𝐱𝛼𝛼{𝑥𝑥𝑗𝑗𝑥𝑥𝑗𝑗}𝐱𝐱𝛼𝛼  
• is the mean correlation between neurons i and j when the 

visible units are “clamped” to 𝐱𝐱𝛼𝛼 

• And 𝜌𝜌𝑗𝑗𝑗𝑗−  = 𝐾𝐾∑ 𝑃𝑃 𝐱𝐱 𝑥𝑥𝑗𝑗𝑥𝑥𝑗𝑗𝐱𝐱 = 𝐸𝐸𝐱𝐱{𝑥𝑥𝑗𝑗𝑥𝑥𝑗𝑗} 
• is the mean correlation between i and j when the machine 

operates without “clamping” 
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Maximization of 𝐿𝐿 𝐰𝐰  

• To maximize 𝐿𝐿 𝐰𝐰 , we use gradient ascent: 

△ 𝑤𝑤𝑗𝑗𝑗𝑗 = 𝜀𝜀
𝜕𝜕𝐿𝐿 𝐰𝐰
𝜕𝜕𝑤𝑤𝑗𝑗𝑗𝑗

=
𝜀𝜀
𝑇𝑇
𝜌𝜌𝑗𝑗𝑗𝑗+ − 𝜌𝜌𝑗𝑗𝑗𝑗−  

= 𝜂𝜂 𝜌𝜌𝑗𝑗𝑗𝑗+ − 𝜌𝜌𝑗𝑗𝑗𝑗−             
     where the learning rate 𝜂𝜂 incorporates the 
temperature 𝑇𝑇 
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Positive and negative phases 

• Thus there are two phases to the learning process: 
1. Positive phase: the net operates in the “clamped” 

condition, where visible units take on training patterns 
with the desired probability distribution 

2. Negative phase: the net operates freely without the 
influence of external input 

 



20 CSE 5526: Boltzmann Machines 

Remarks on Boltzmann machine learning 

• The Boltzmann learning rule is a remarkably simple 
local rule, concerning only “presynaptic” and 
“postsynaptic” neurons 
• Such local rules are biologically plausible 

• But, computing 𝜌𝜌𝑗𝑗𝑗𝑗+ directly requires summing over 
2𝐻𝐻 terms for each observed data point 

• Computing 𝜌𝜌𝑗𝑗𝑗𝑗− requires summing 2𝑁𝑁 terms once 
• Can we approximate those sums? 
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Sampling methods can approximate 
expectations (difficult integrals/sums) 

• Want to compute 𝜌𝜌𝑗𝑗𝑗𝑗− = ∑ 𝑃𝑃 𝐱𝐱 𝑥𝑥𝑗𝑗𝑥𝑥𝑗𝑗𝐱𝐱 = 𝐸𝐸𝐱𝐱 𝑥𝑥𝑗𝑗𝑥𝑥𝑗𝑗  
• We can approximate that expectation as 

𝜌𝜌𝑗𝑗𝑗𝑗− = 𝐸𝐸𝐱𝐱 𝑥𝑥𝑗𝑗𝑥𝑥𝑗𝑗 ≈
1
𝑁𝑁
�𝑥𝑥𝑗𝑗𝑥𝑥𝑗𝑗
𝐱𝐱𝑛𝑛

 

• Where 𝐱𝐱𝑛𝑛 are samples drawn from 𝑃𝑃 𝐱𝐱𝑛𝑛  

• In general 𝐸𝐸𝐱𝐱 𝑓𝑓(𝐱𝐱) ≈ 1
𝑁𝑁
∑ 𝑓𝑓 𝐱𝐱𝑛𝑛𝐱𝐱𝑛𝑛  

• The sum converges to the true expectation as the number 
of samples goes to infinity 

• This is called Monte Carlo integration / summation 
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Gibbs sampling can draw samples  
from intractable distributions 

• Many high-dimensional probability distributions are 
difficult to compute or sample from 

• But Gibbs sampling can draw samples from them 
• If you can compute the probability of some variables 

given others 
• This is typically the case in graphical models, including 

Boltzmann machines 
• This kind of approach is called Markov chain 

Monte Carlo (MCMC) 
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Gibbs sampling can draw samples  
from intractable distributions 

• Consider a K-dimensional random vector 
𝐱𝐱 = (𝑥𝑥1, … , 𝑥𝑥𝐾𝐾)𝑇𝑇 

• Suppose we know the conditional distributions 
𝑝𝑝 𝑥𝑥𝑘𝑘 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘−1, 𝑥𝑥𝑘𝑘+1, … , 𝑥𝑥𝐾𝐾 = 𝑝𝑝 𝑥𝑥𝑘𝑘 𝐱𝐱∼𝑘𝑘  

• Then by sampling each 𝑥𝑥𝑘𝑘 in turn (or randomly), the 
distribution of samples will eventually converge to  

𝑝𝑝 𝐱𝐱 = 𝑝𝑝(𝑥𝑥1, … , 𝑥𝑥𝐾𝐾) 
• Note: it can be difficult to know how long to sample 
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Gibbs sampling algorithm 

• For iteration n: 
𝑥𝑥1(𝑛𝑛) is drawn from 𝑝𝑝 𝑥𝑥1 𝑥𝑥2, … , 𝑥𝑥𝐾𝐾  
… 
𝑥𝑥𝑘𝑘(𝑛𝑛) is drawn from 𝑝𝑝 𝑥𝑥𝑘𝑘 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘−1, 𝑥𝑥𝑘𝑘+1, … , 𝑥𝑥𝐾𝐾  
… 
𝑥𝑥𝐾𝐾(𝑛𝑛) is drawn from 𝑝𝑝 𝑥𝑥𝐾𝐾 𝑥𝑥1, … , 𝑥𝑥𝐾𝐾−1  

• Each iteration samples each random variable once 
in the natural order 

• Newly sampled values are used immediately (i.e., 
asynchronous sampling) 
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Gibbs sampling in Boltzmann machines 

• Need 𝑝𝑝 𝑥𝑥𝑘𝑘 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘−1, 𝑥𝑥𝑘𝑘+1, … , 𝑥𝑥𝐾𝐾 = 𝑝𝑝 𝑥𝑥𝑘𝑘 𝐱𝐱∼𝑘𝑘  
• Can compute from Boltzmann-Gibbs distribution 

𝑝𝑝 𝑥𝑥𝑘𝑘 𝐱𝐱∼𝑘𝑘 =
𝑝𝑝 𝑥𝑥𝑘𝑘 = 1, 𝐱𝐱∼𝑘𝑘

𝑝𝑝 𝑥𝑥𝑘𝑘 = 1, 𝐱𝐱∼𝑘𝑘 + 𝑝𝑝 𝑥𝑥𝑘𝑘 = −1, 𝐱𝐱∼𝑘𝑘
 

=

1
𝑍𝑍 exp −𝐸𝐸

+

𝑇𝑇
1
𝑍𝑍 exp −𝐸𝐸

+

𝑇𝑇 + 1
𝑍𝑍 exp −𝐸𝐸

−

𝑇𝑇

 

=
1

1 + exp 1
𝑇𝑇 𝐸𝐸+ − 𝐸𝐸−

= 𝜎𝜎
Δ𝐸𝐸
𝑇𝑇
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So Boltzmann machines use 
stochastic neurons with sigmoid activation 

• Neuron 𝑘𝑘 is connected to all other neurons: 

𝑣𝑣𝑘𝑘 = �𝑤𝑤𝑘𝑘𝑗𝑗𝑥𝑥𝑗𝑗
𝑗𝑗

 

• It is then updated stochastically so that 

𝑥𝑥𝑘𝑘 = � 1    with prob.  𝜑𝜑 𝑣𝑣𝑘𝑘      
−1    with prob.  1 − 𝜑𝜑(𝑣𝑣𝑘𝑘) 

• Where 

𝜑𝜑 𝑣𝑣 =
1

1 + exp −𝑣𝑣𝑇𝑇
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Prob. of flipping a single neuron 

• Consider the prob. of flipping a single neuron k: 

𝑃𝑃 𝑥𝑥𝑘𝑘 → −𝑥𝑥𝑘𝑘 =
1

1 + exp ∆𝐸𝐸𝑘𝑘
2𝑇𝑇

 

where ∆𝐸𝐸𝑗𝑗 is the energy change due to the flip (proof is a 
homework problem) 

• So a change that decreases the energy is more likely 
than that increasing the energy 
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Simulated annealing 

• As the temperature T decreases 
• The average energy of a stochastic system decreases 
• It reaches the global minimum as 𝑇𝑇 → 0 
• So for optimization problems, should favor low temps 

• But, convergence is slow at low temps  
• due to trapping at local minima 

• Simulated annealing is a stochastic optimization 
technique that gradually decreases 𝑇𝑇 
• To get the best of both worlds 
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Simulated annealing (cont.) 

• No guarantee for the global minimum, but higher 
chances for lower local minima 
 
 
 
 
 

• Boltzmann machines use simulated annealing to 
gradually lower T 
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Full Boltzmann machine training algorithm 

• The entire algorithm consists of the following 
nested loops: 
1. Loop over all training data points, accumulating 

gradient of each weight 
2. For each data point, compute expectation 𝑥𝑥𝑗𝑗𝑥𝑥𝑗𝑗  with 𝐱𝐱𝛼𝛼 

clamped and free 
3. Compute expectations using simulated annealing, 

gradually decreasing T 
4. For each T, sample the state of the entire net a number 

of times using Gibbs sampling 
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Remarks on Boltzmann machine training 

• Boltzmann machines are extremely slow to train 
• but work well once they are trained 

• Because of its computational complexity, the 
algorithm has only been applied to toy problems 

• But: the restricted Boltzmann machine is much 
easier to train, stay tuned… 
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An example 

• The 
encoder 
problem 
(see 
blackboard) 

• Ackley, 
Hinton, 
Sejnowski 
(1985) 
 


	CSE 5526: Introduction to Neural Networks
	Boltzmann machines are �a stochastic extension of Hopfield networks
	In general, the network is fully connected
	Boltzmann machines have �the same energy function as Hopfield networks
	The Boltzmann-Gibbs distribution �defines probabilities from energies
	Remarks
	Boltzmann-Gibbs distribution example
	Boltzmann-Gibbs distribution example
	Boltzmann-Gibbs distribution example
	Boltzmann-Gibbs distribution applied to Hopfield network energy function
	Boltzmann machines are �unsupervised probability models
	Compute the probability of a new observation
	Learning can be performed by gradient descent
	Log likelihood of data has two terms
	Gradient of log likelihood of data
	Gradient of log likelihood of data
	Gradient of log likelihood of data
	Maximization of 𝐿 𝐰 
	Positive and negative phases
	Remarks on Boltzmann machine learning
	Sampling methods can approximate expectations (difficult integrals/sums)
	Gibbs sampling can draw samples �from intractable distributions
	Gibbs sampling can draw samples �from intractable distributions
	Gibbs sampling algorithm
	Gibbs sampling in Boltzmann machines
	So Boltzmann machines use�stochastic neurons with sigmoid activation
	Prob. of flipping a single neuron
	Simulated annealing
	Simulated annealing (cont.)
	Full Boltzmann machine training algorithm
	Remarks on Boltzmann machine training
	An example

