CSE 5526: Introduction to Neural Networks

Support Vector Machines
(SVMs)

Part 3: Kernels
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Kernels are generalizations of inner products

* A kernel Is a function of two data points such that
k(x,x") = ¢"(x)p(x")
For some function ¢ (x)
* |tis therefore symmetric: k(x,x') = k(x', x)
* Can compute k(x,x") from an explicit ¢p(x)

* Or prove that k(x, x") corresponds to some ¢ (x)
* Never need to actually compute ¢ (x)
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SVM as a kernel machine

* Cover’s theorem: A complex classification
problem, cast in a high-dimensional space
nonlinearly, is more likely to be linearly separable
than in the low-dimensional input space

* SVM for pattern classification

1. Nonlinear mapping of the input space onto a high-
dimensional feature space

2. Constructing the optimal hyperplane for the feature
space
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Kernel machine illustration
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Kernelized SVM looks a lot like an RBF net
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Kernel matrix

* The matrix
k(X1,X1) k(X1,Xy)"
K = k(Xi,Xj)
k(Xy,X1) k(Xn, Xn) .

IS called the kernel matrix, or the Gram matrix.
* K Is positive semidefinite
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Mercer’s theorem relates kernel functions
and Inner product spaces

* Suppose that for all finite sets of points {xp}g:1 and
real numbers {a},~-,
z ajaik(xl-,xj) >0
i,J
* Then K is called a positive semidefinite kernel
* And can be written as

k(x,x") = " (X)p(x")

* For some vector-valued function ¢ (x)
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Kernels can be applied in many situations

e Kernel trick: when predictions are based on inner
products of data points, replace with kernel function

* Some algorithms where this Is possible
* Linear / ridge regression
* Principal components analysis
* Canonical correlation analysis
* Perceptron classifier
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Some popular kernels

* Polynomial kernel, parameters ¢ and p
k(x,x') = (x"x" + c)?
* Finite-dimensional ¢ (x) can be explicitly computed

* Gaussian or RBF kernel, parameter o

1
k(x,x") = exp (—% |x — x’||2>

* Infinite-dimensional ¢ (x)

* Equivalent to RBF network, but more principled way of
finding centers
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Some popular kernels

* Hypebolic tangent kernel, parameters ; and 3,
k(x,x') = tanh(Bx"x" + B,)
* Only positive semidefinite for some values of 8, and £,

* |nspired by neural networks, but more principled way of
selecting number of hidden units

e String kernels or other structure kernels
* Can prove that they are positive definite
* Computed between non-numeric items
* Avoid converting to fixed-length feature vectors
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Example: polynomial kernel

* Polynomial kernel In2D,c=1,p = 2

k(x,x) = (xT'x" +1)% = (xyx1 + xx5 + 1)°
= x2x!° 4 x2x,°% + 20, x,0% + 2%, + 2x,% + 1
* If we define

P (x) = |x7, x2,V2x,X5, V2x4, V2x,, 1]T
° Thenk(x,x") = " (x)p(x")
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Example: XOR problem again

* Consider (once again) the XOR problem

* The SVM can solve it using a polynomial kernel
* Withp=2andc=1

TABLE 6.2 XOR Problem

Input vector x  Desired response d

(—1,—1) —1
(-1, +1) +1
(+1,—1) +1
(+1, +1) -1
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XOR: first compute the kernel matrix

* Ingeneral, K;; = k(x;,x;) = (1+ xiij)z
* For example,
K= k(|2 [5]) = a+2? =0
Ko = k(|2 [4]) = a+02 =1
°* S0

BN

—_ O =
O = =
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XOR: first compute the kernel matrix

* Or compute ¢(x;) and their inner products, e.g.,

* Remember, ¢(x) =[x, xZ,V2x,%5, V2x4,V2x,, 1‘j|L ~or b
* Since ¢(x) includes 1, no need for separate b later

b = ¢([7]) = [L1LV2 V2, —V2,1]
b)) = ¢ ([ 7]) = [LL V2, —V2V2,1]

°* Then
Kii=dT(x)dp(x))=1+1+2+2+2+1=9
Ko,=¢"(x)p(x,)=1+1-24+2-2+1=1
* Results in same K matrix, but more computation
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XOR: Combine class labels into K

* Define matrix K such that K;; = K;;d;d;
e Recalld = [-1,+1, +1,—1]"

+9 -1 -1 +1
-1 +9 +1 -1
-1 +1 +9 -1
+1 -1 -1 +9.

2
|
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XOR: Solve dual Lagrangian for a

* Find fixed points of

- 1 .-
L(a) =1Ta — iaTKa

* Set matrix gradientto O

* Satisfies all conditions: a,, = 0Vp X,a,d, =

* So this is the solution
* All points are support vectors
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XOR: Compute w (including b) from a

! 1 1 1
= —§¢(x1) + gﬁb(xz) + gqb(x3) — gqb(a_u
S
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XOR: Examine prediction function

* Prediction function

y(x) = w'¢(x)

T
1
— [O;O) o \/_E' O;O;O] [xlzi xZZJ \/EX1X2' \/EX]-’ \/EXZ' 1]

= TX1X2
* Predictions are based on product of the dimensions
y(x1) =—-(=1(-1) =-1
y(xz) = —(-1D(+1) = +1
y(x3) = —(+1)(-1) = +1
y(x,) = —-(+1)(+1) = -1
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XOR: Decision boundaries

* Decision boundary at y(x) = —xyx, =0
* Support vectors at y(x) = —xyx, =1
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