CSE 5526: Introduction to Neural Networks

Support Vector Machines (SVMs) Part 3: Kernels

Kernels are generalizations of inner products

• A kernel is a function of two data points such that $k(x, x') = \phi^T(x)\phi(x')$

For some function $\phi(x)$

- It is therefore symmetric: k(x, x') = k(x', x)
- Can compute k(x, x') from an explicit $\phi(x)$
- Or prove that k(x, x') corresponds to some $\phi(x)$
 - Never need to actually compute $\phi(x)$

SVM as a kernel machine

- **Cover's theorem**: A complex classification problem, cast in a high-dimensional space nonlinearly, is more likely to be linearly separable than in the low-dimensional input space
- SVM for pattern classification
 - 1. Nonlinear mapping of the input space onto a highdimensional feature space
 - 2. Constructing the optimal hyperplane for the feature space

Kernel machine illustration

Kernelized SVM looks a lot like an RBF net

CSE 5526: SVMs

Kernel matrix

• The matrix

$$\mathbf{K} = \begin{bmatrix} k(\mathbf{x}_1, \mathbf{x}_1) & \cdots & k(\mathbf{x}_1, \mathbf{x}_N) \\ \vdots & \vdots \\ k(\mathbf{x}_1, \mathbf{x}_1) & \cdots & k(\mathbf{x}_1, \mathbf{x}_2) \\ \vdots \\ k(\mathbf{x}_N, \mathbf{x}_1) & \cdots & k(\mathbf{x}_N, \mathbf{x}_N) \end{bmatrix}$$

is called the kernel matrix, or the Gram matrix.K is positive semidefinite

Mercer's theorem relates kernel functions and inner product spaces

• Suppose that for all finite sets of points $\{x_p\}_{p=1}^{N}$ and real numbers $\{a\}_{p=1}^{\infty}$

$$\sum_{i,j} a_j a_i k(\boldsymbol{x}_i, \boldsymbol{x}_j) \ge 0$$

- Then *K* is called a positive semidefinite kernel
- And can be written as

$$k(\boldsymbol{x}, \boldsymbol{x}') = \phi^T(\boldsymbol{x})\phi(\boldsymbol{x}')$$

• For some vector-valued function $\phi(x)$

Kernels can be applied in many situations

- Kernel trick: when predictions are based on inner products of data points, replace with kernel function
- Some algorithms where this is possible
 - Linear / ridge regression
 - Principal components analysis
 - Canonical correlation analysis
 - Perceptron classifier

Some popular kernels

- Polynomial kernel, parameters *c* and *p* $k(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + c)^p$
 - Finite-dimensional $\phi(x)$ can be explicitly computed
- Gaussian or RBF kernel, parameter σ $k(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{1}{2\sigma}\|\mathbf{x} - \mathbf{x}'\|^2\right)$
 - Infinite-dimensional $\phi(x)$
 - Equivalent to RBF network, but more principled way of finding centers

Some popular kernels

- Hypebolic tangent kernel, parameters β_1 and β_2 $k(\mathbf{x}, \mathbf{x}') = \tanh(\beta_1 \mathbf{x}^T \mathbf{x}' + \beta_2)$
 - Only positive semidefinite for some values of β_1 and β_2
 - Inspired by neural networks, but more principled way of selecting number of hidden units
- String kernels or other structure kernels
 - Can prove that they are positive definite
 - Computed between non-numeric items
 - Avoid converting to fixed-length feature vectors

Example: polynomial kernel

- Polynomial kernel in 2D, c = 1, p = 2 $k(x, x') = (x^T x' + 1)^2 = (x_1 x_1' + x_2 x_2' + 1)^2$ $= x_1^2 x_1'^2 + x_2^2 x_2'^2 + 2x_1 x_1' x_2 x_2' + 2x_1 x_1' + 2x_2 x_2' + 1$
- If we define

$$\phi(\mathbf{x}) = \left[x_1^2, x_2^2, \sqrt{2}x_1x_2, \sqrt{2}x_1, \sqrt{2}x_2, 1\right]^T$$

Then $k(\mathbf{x}, \mathbf{x}') = \phi^T(\mathbf{x})\phi(\mathbf{x}')$

Example: XOR problem again

- Consider (once again) the XOR problem
- The SVM can solve it using a polynomial kernel
 - With p = 2 and c = 1

TABLE 6.2 XOR Problem	
Input vector x	Desired response d
(-1,-1)	-1
(-1, +1)	+1
(+1, -1)	+1
(+1, +1)	-1

XOR: first compute the kernel matrix

• In general,
$$K_{ij} = k(x_i, x_j) = (1 + x_i^T x_j)^2$$

• For example,

$$K_{11} = k \left(\begin{bmatrix} -1 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \end{bmatrix} \right) = (1+2)^2 = 9$$

$$K_{12} = k \left(\begin{bmatrix} -1 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ +1 \end{bmatrix} \right) = (1+0)^2 = 1$$

• So

$$K = \begin{bmatrix} 9 & 1 & 1 & 1 \\ 1 & 9 & 1 & 1 \\ 1 & 1 & 9 & 1 \\ 1 & 1 & 1 & 9 \end{bmatrix}$$

XOR: first compute the kernel matrix

- Or compute $\phi(x_i)$ and their inner products, e.g.,
 - Remember, $\phi(\mathbf{x}) = [x_1^2, x_2^2, \sqrt{2}x_1x_2, \sqrt{2}x_1, \sqrt{2}x_2, 1]^T$ For b
 - Since $\phi(\mathbf{x})$ includes 1, no need for separate *b* later $\phi(\mathbf{x}_1) = \phi\left(\begin{bmatrix} -1 \\ -1 \end{bmatrix} \right) = \begin{bmatrix} 1, 1, \sqrt{2}, -\sqrt{2}, -\sqrt{2}, 1 \end{bmatrix}^T$ $\phi(\mathbf{x}_2) = \phi\left(\begin{bmatrix} -1 \\ +1 \end{bmatrix} \right) = \begin{bmatrix} 1, 1, -\sqrt{2}, -\sqrt{2}, \sqrt{2}, 1 \end{bmatrix}^T$

• Then

 $K_{11} = \phi^T(\mathbf{x}_1)\phi(\mathbf{x}_1) = 1 + 1 + 2 + 2 + 2 + 1 = 9$ $K_{12} = \phi^T(\mathbf{x}_1)\phi(\mathbf{x}_2) = 1 + 1 - 2 + 2 - 2 + 1 = 1$

• Results in same *K* matrix, but more computation

CSE 5526: SVMs

XOR: Combine class labels into K

- Define matrix \widetilde{K} such that $\widetilde{K}_{ij} = K_{ij}d_id_j$
- Recall $d = [-1, +1, +1, -1]^T$

$$\widetilde{K} = \begin{bmatrix} +9 & -1 & -1 & +1 \\ -1 & +9 & +1 & -1 \\ -1 & +1 & +9 & -1 \\ +1 & -1 & -1 & +9 \end{bmatrix}$$

XOR: Solve dual Lagrangian for *a*

• Find fixed points of

$$\tilde{L}(\boldsymbol{a}) = \mathbf{1}^T \boldsymbol{a} - \frac{1}{2} \boldsymbol{a}^T \tilde{K} \boldsymbol{a}$$

• Set matrix gradient to 0

$$\nabla \widetilde{L} = \mathbf{1} - \widetilde{K} \mathbf{a} = \mathbf{0}$$
$$\Rightarrow \mathbf{a} = \widetilde{K}^{-1} \mathbf{1} = \left[\frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}\right]^{T}$$

- Satisfies all conditions: $a_p \ge 0 \forall p \quad \sum_p a_p d_p = 0$
 - So this is the solution
- All points are support vectors

XOR: Compute *w* (including *b*) from *a*

XOR: Examine prediction function

• Prediction function

$$y(\mathbf{x}) = \mathbf{w}^{T} \phi(\mathbf{x})$$

= $\left[0, 0, -\frac{1}{\sqrt{2}}, 0, 0, 0\right]^{T} \left[x_{1}^{2}, x_{2}^{2}, \sqrt{2}x_{1}x_{2}, \sqrt{2}x_{1}, \sqrt{2}x_{2}, 1\right]$
= $-x_{1}x_{2}$

• Predictions are based on product of the dimensions

$$y(x_1) = -(-1)(-1) = -1$$

$$y(x_2) = -(-1)(+1) = +1$$

$$y(x_3) = -(+1)(-1) = +1$$

$$y(x_4) = -(+1)(+1) = -1$$

XOR: Decision boundaries

- Decision boundary at $y(\mathbf{x}) = -x_1 x_2 = 0$
- Support vectors at $y(x) = -x_1x_2 = 1$

CSE 5526: SVMs