CSE 5526: Introduction to Neural Networks

Support Vector Machines (SVMs)
 Part 3: Kernels

Kernels are generalizations of inner products

- A kernel is a function of two data points such that

$$
k\left(x, x^{\prime}\right)=\phi^{T}(x) \phi\left(x^{\prime}\right)
$$

For some function $\phi(x)$

- It is therefore symmetric: $k\left(x, x^{\prime}\right)=k\left(x^{\prime}, x\right)$
- Can compute $k\left(x, x^{\prime}\right)$ from an explicit $\phi(x)$
- Or prove that $k\left(x, x^{\prime}\right)$ corresponds to some $\phi(x)$
- Never need to actually compute $\phi(x)$

SVM as a kernel machine

- Cover's theorem: A complex classification problem, cast in a high-dimensional space nonlinearly, is more likely to be linearly separable than in the low-dimensional input space
- SVM for pattern classification

1. Nonlinear mapping of the input space onto a highdimensional feature space
2. Constructing the optimal hyperplane for the feature space

Kernel machine illustration

Kernelized SVM looks a lot like an RBF net

Kernel matrix

- The matrix

$$
\mathbf{K}=\left[\begin{array}{ccc}
k\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right) & \ldots & k\left(\mathbf{x}_{1}, \mathbf{x}_{N}\right) \\
& \vdots & \\
\ldots & k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) & \ldots \\
k\left(\mathbf{x}_{N}, \mathbf{x}_{1}\right) & \vdots & k\left(\mathbf{x}_{N}, \mathbf{x}_{N}\right)
\end{array}\right]
$$

is called the kernel matrix, or the Gram matrix.

- \mathbf{K} is positive semidefinite

Mercer's theorem relates kernel functions

 and inner product spaces- Suppose that for all finite sets of points $\left\{\boldsymbol{x}_{p}\right\}_{p=1}^{N}$ and real numbers $\{\boldsymbol{a}\}_{p=1}^{\infty}$

$$
\sum_{i, j} a_{j} a_{i} k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right) \geq 0
$$

- Then \boldsymbol{K} is called a positive semidefinite kernel
- And can be written as

$$
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\phi^{T}(\boldsymbol{x}) \phi\left(\boldsymbol{x}^{\prime}\right)
$$

- For some vector-valued function $\phi(\boldsymbol{x})$

Kernels can be applied in many situations

- Kernel trick: when predictions are based on inner products of data points, replace with kernel function
- Some algorithms where this is possible
- Linear / ridge regression
- Principal components analysis
- Canonical correlation analysis
- Perceptron classifier

Some popular kernels

- Polynomial kernel, parameters c and p

$$
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\left(\boldsymbol{x}^{T} \boldsymbol{x}^{\prime}+c\right)^{p}
$$

- Finite-dimensional $\phi(\boldsymbol{x})$ can be explicitly computed
- Gaussian or RBF kernel, parameter σ

$$
k\left(x, x^{\prime}\right)=\exp \left(-\frac{1}{2 \sigma}\left\|x-x^{\prime}\right\|^{2}\right)
$$

- Infinite-dimensional $\phi(\boldsymbol{x})$
- Equivalent to RBF network, but more principled way of finding centers

Some popular kernels

- Hypebolic tangent kernel, parameters β_{1} and β_{2}

$$
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\tanh \left(\beta_{1} \boldsymbol{x}^{T} \boldsymbol{x}^{\prime}+\beta_{2}\right)
$$

- Only positive semidefinite for some values of β_{1} and β_{2}
- Inspired by neural networks, but more principled way of selecting number of hidden units
- String kernels or other structure kernels
- Can prove that they are positive definite
- Computed between non-numeric items
- Avoid converting to fixed-length feature vectors

Example: polynomial kernel

- Polynomial kernel in 2D, $c=1, p=2$
$k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\left(\boldsymbol{x}^{T} \boldsymbol{x}^{\prime}+1\right)^{2}=\left(x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}+1\right)^{2}$
$=x_{1}^{2} x_{1}^{\prime 2}+x_{2}^{2} x_{2}^{\prime 2}+2 x_{1} x_{1}^{\prime} x_{2} x_{2}^{\prime}+2 x_{1} x_{1}^{\prime}+2 x_{2} x_{2}^{\prime}+1$
- If we define

$$
\phi(x)=\left[x_{1}^{2}, x_{2}^{2}, \sqrt{2} \mathrm{x}_{1} \mathrm{x}_{2}, \sqrt{2} \mathrm{x}_{1}, \sqrt{2} \mathrm{x}_{2}, 1\right]^{T}
$$

- Then $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\phi^{T}(\boldsymbol{x}) \phi\left(\boldsymbol{x}^{\prime}\right)$

Example: XOR problem again

- Consider (once again) the XOR problem
- The SVM can solve it using a polynomial kernel
- With $p=2$ and $c=1$

TABLE 6.2	XOR Problem
Input vector \mathbf{x}	Desired response d
$(-1,-1)$	-1
$(-1,+1)$	+1
$(+1,-1)$	+1
$(+1,+1)$	-1

XOR: first compute the kernel matrix

- In general, $K_{i j}=k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=\left(1+\boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j}\right)^{2}$
- For example,

$$
\begin{aligned}
& K_{11}=k\left(\left[\begin{array}{l}
-1 \\
-1
\end{array}\right],\left[\begin{array}{l}
-1 \\
-1
\end{array}\right]\right)=(1+2)^{2}=9 \\
& K_{12}=k\left(\left[\begin{array}{l}
-1 \\
-1
\end{array}\right],\left[\begin{array}{l}
-1 \\
+1
\end{array}\right]\right)=(1+0)^{2}=1
\end{aligned}
$$

- So

$$
K=\left[\begin{array}{llll}
9 & 1 & 1 & 1 \\
1 & 9 & 1 & 1 \\
1 & 1 & 9 & 1 \\
1 & 1 & 1 & 9
\end{array}\right]
$$

XOR: first compute the kernel matrix

- Or compute $\phi\left(\boldsymbol{x}_{i}\right)$ and their inner products, e.g.,
- Remember, $\phi(x)=\left[x_{1}^{2}, x_{2}^{2}, \sqrt{2} \mathrm{x}_{1} \mathrm{x}_{2}, \sqrt{2} \mathrm{x}_{1}, \sqrt{2} \mathrm{x}_{2}, 1\right]^{\top}$ For b
- Since $\phi(\boldsymbol{x})$ includes 1 , no need for separate b later

$$
\begin{aligned}
& \phi\left(x_{1}\right)=\phi\left(\left[\begin{array}{l}
-1 \\
-1
\end{array}\right]\right)=[1,1, \sqrt{2},-\sqrt{2},-\sqrt{2}, 1]^{T} \\
& \phi\left(\boldsymbol{x}_{2}\right)=\phi\left(\left[\begin{array}{l}
-1 \\
+1
\end{array}\right]\right)=[1,1,-\sqrt{2},-\sqrt{2}, \sqrt{2}, 1]^{T}
\end{aligned}
$$

- Then

$$
\begin{aligned}
& K_{11}=\phi^{T}\left(\boldsymbol{x}_{1}\right) \phi\left(\boldsymbol{x}_{1}\right)=1+1+2+2+2+1=9 \\
& K_{12}=\phi^{T}\left(\boldsymbol{x}_{1}\right) \phi\left(\boldsymbol{x}_{2}\right)=1+1-2+2-2+1=1
\end{aligned}
$$

- Results in same K matrix, but more computation

XOR: Combine class labels into K

- Define matrix \widetilde{K} such that $\widetilde{K}_{i j}=K_{i j} d_{i} d_{j}$
- Recall $\boldsymbol{d}=[-1,+1,+1,-1]^{T}$

$$
\widetilde{K}=\left[\begin{array}{llll}
+9 & -1 & -1 & +1 \\
-1 & +9 & +1 & -1 \\
-1 & +1 & +9 & -1 \\
+1 & -1 & -1 & +9
\end{array}\right]
$$

XOR: Solve dual Lagrangian for \boldsymbol{a}

- Find fixed points of

$$
\widetilde{L}(\boldsymbol{a})=\mathbf{1}^{T} \boldsymbol{a}-\frac{1}{2} \boldsymbol{a}^{T} \widetilde{K} \boldsymbol{a}
$$

- Set matrix gradient to 0

$$
\begin{gathered}
\nabla \widetilde{L}=\mathbf{1}-\widetilde{K} \boldsymbol{a}=\mathbf{0} \\
\Rightarrow \boldsymbol{a}=\widetilde{K}^{-1} \mathbf{1}=\left[\frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}\right]^{T}
\end{gathered}
$$

- Satisfies all conditions: $a_{p} \geq 0 \forall p \quad \sum_{p} a_{p} d_{p}=0$
- So this is the solution
- All points are support vectors

XOR: Compute \boldsymbol{w} (including b) from \boldsymbol{a}

$$
\begin{gathered}
\boldsymbol{w}=\sum_{p} a_{p} d_{p} \boldsymbol{x}_{p} \\
=-\frac{1}{8} \phi\left(\boldsymbol{x}_{1}\right)+\frac{1}{8} \phi\left(\boldsymbol{x}_{2}\right)+\frac{1}{8} \phi\left(\boldsymbol{x}_{3}\right)-\frac{1}{8} \phi\left(\boldsymbol{x}_{4}\right) \\
=\frac{1}{8}\left(\left[\begin{array}{c}
1 \\
1 \\
\sqrt{2} \\
-\sqrt{2} \\
-\sqrt{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
1 \\
1 \\
-\sqrt{2} \\
-\sqrt{2} \\
\sqrt{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
1 \\
1 \\
-\sqrt{2} \\
\sqrt{2} \\
-\sqrt{2} \\
1
\end{array}\right]-\left[\begin{array}{c}
1 \\
1 \\
\sqrt{2} \\
\sqrt{2} \\
\sqrt{2} \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
0 \\
0 \\
-\frac{1}{\sqrt{2}} \\
0 \\
0 \\
0
\end{array}\right] b
\end{gathered}
$$

XOR: Examine prediction function

- Prediction function

$$
\begin{gathered}
y(\boldsymbol{x})=\boldsymbol{w}^{T} \phi(\boldsymbol{x}) \\
=\left[0,0,-\frac{1}{\sqrt{2}}, 0,0,0\right]^{T}\left[x_{1}^{2}, x_{2}^{2}, \sqrt{2} \mathrm{x}_{1} \mathrm{x}_{2}, \sqrt{2} \mathrm{x}_{1}, \sqrt{2} \mathrm{x}_{2}, 1\right] \\
=-x_{1} x_{2}
\end{gathered}
$$

- Predictions are based on product of the dimensions

$$
\begin{aligned}
& y\left(x_{1}\right)=-(-1)(-1)=-1 \\
& y\left(x_{2}\right)=-(-1)(+1)=+1 \\
& y\left(x_{3}\right)=-(+1)(-1)=+1 \\
& y\left(x_{4}\right)=-(+1)(+1)=-1
\end{aligned}
$$

XOR: Decision boundaries

- Decision boundary at $y(\boldsymbol{x})=-x_{1} x_{2}=0$
- Support vectors at $y(\boldsymbol{x})=-x_{1} x_{2}=1$

