
1 CSE 5526: SVMs 

CSE 5526: Introduction to Neural Networks 

Support Vector Machines 
(SVM) 
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Perceptrons find any separating hyperplane 
Depends on initialization and ordering of training points 
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But the maximum margin hyperplane 
generalizes the best to new data 

Margin 

According to computational/statistical learning theory 
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But the maximum margin hyperplane 
generalizes the best to new data 

• According to computational learning theory 
• Also known as statistical learning theory 
• We won’t get into the details of that 
• Recall from the perceptron convergence proof 

• We assumed the existance of a best hyperplane 𝒘𝒘0 
• Which provided the maximum margin 𝛼𝛼  
• Such that 𝑑𝑑𝑝𝑝𝒘𝒘0

𝑇𝑇𝒙𝒙𝑝𝑝 ≥ 𝛼𝛼 for all training points 𝑝𝑝 

• The SVM actually finds this hyperplane 



8 CSE 5526: SVMs 

The maximum margin only depends  
on certain points, the support vectors 

Margin 



9 CSE 5526: SVMs 

The maximum margin only depends  
on certain points, the support vectors 

Margin 



10 CSE 5526: SVMs 

The maximum margin only depends  
on certain points, the support vectors 

Margin 
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Maximum margin problem 

• Given a set of data from two classes {𝒙𝒙𝑝𝑝,𝑑𝑑𝑝𝑝} 
• 𝑥𝑥𝑝𝑝 ∈ ℝ𝐷𝐷 and 𝑑𝑑𝑝𝑝 ∈ {−1,1} 
• Assume the classes are linearly separable for now 

• Find the hyperplane that separates them  
• with maximum margin 

• Equation of general linear discriminant function 
𝑦𝑦 𝒙𝒙 = 𝒘𝒘𝑇𝑇𝒙𝒙 + 𝑏𝑏 

• Find 𝒘𝒘 and 𝑏𝑏 that give maximum margin 
• How can we quantify margin? 
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𝑏𝑏 defines its distance from the origin 
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𝒘𝒘 is perpendicular to the hyperplane 

• Consider two points on the hyperplane 𝒙𝒙𝐴𝐴 and 𝒙𝒙𝐵𝐵 
• Then 𝑦𝑦 𝒙𝒙𝐴𝐴 = 𝑦𝑦 𝒙𝒙𝐵𝐵 = 0 by definition 
• So 0 = 𝑦𝑦 𝒙𝒙𝐴𝐴 − 𝑦𝑦 𝒙𝒙𝐵𝐵 = 𝒘𝒘𝑇𝑇(𝒙𝒙𝐴𝐴 − 𝒙𝒙𝐵𝐵) 
• 𝒙𝒙𝐴𝐴 − 𝒙𝒙𝐵𝐵 is a vector pointing along the hyperplane 
• So 𝒘𝒘 is perpendicular to the hyperplane 
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𝑏𝑏 defines the hyerplane’s  
distance from the origin 

• Consider a general point 𝒙𝒙 

• Its distance to the origin is 𝐷𝐷 = 𝒘𝒘𝑇𝑇𝒙𝒙
𝒘𝒘

 

• If 𝒙𝒙 is on the hyperplane, then 𝑦𝑦 𝒙𝒙 = 0 
• So 𝒘𝒘𝑇𝑇𝒙𝒙 = −𝑏𝑏 

• So the distance from the hyperplane to the origin is 

𝐷𝐷 = −
𝑏𝑏
𝒘𝒘
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𝒘𝒘 is perpendicular to the hyperplane, 
𝑏𝑏 defines its distance from the origin 
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The distance from point 𝒙𝒙  
to the hyperplane is 𝑦𝑦(𝒙𝒙)/ 𝒘𝒘  
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The distance from point 𝒙𝒙  
to the hyperplane is 𝑦𝑦(𝒙𝒙)/ 𝒘𝒘  

• Consider a point 𝒙𝒙 and its projection onto the 
hyperplane 𝒙𝒙⊥ so that 𝒙𝒙 = 𝒙𝒙⊥ + 𝑟𝑟 𝒘𝒘

𝒘𝒘
 

• We want to find 𝑟𝑟, the distance to the hyperplane 
• Multiply both sides by 𝒘𝒘𝑇𝑇 and add 𝑏𝑏 

𝒘𝒘𝑇𝑇𝒙𝒙 + 𝑏𝑏 = 𝒘𝒘𝑇𝑇𝒙𝒙⊥ + 𝑏𝑏 + 𝑟𝑟
𝒘𝒘 𝟐𝟐

𝒘𝒘
 

𝑦𝑦 𝒙𝒙 = 𝑦𝑦 𝒙𝒙⊥ + 𝑟𝑟 𝒘𝒘  

𝑟𝑟 =
𝑦𝑦 𝒙𝒙
𝒘𝒘
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The distance from point 𝒙𝒙  
to the hyperplane is 𝑦𝑦(𝒙𝒙)/ 𝒘𝒘  
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The maximum margin hyperplane 
is farthest from all of the data points 

min𝑝𝑝𝑑𝑑𝑝𝑝𝑦𝑦(𝒙𝒙𝑝𝑝)/ 𝒘𝒘  
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The maximum margin hyperplane 
is farthest from all of the data points 

• The margin is defined as  

𝛼𝛼 = min𝑝𝑝𝑑𝑑𝑝𝑝
𝑦𝑦 𝒙𝒙𝑝𝑝
𝒘𝒘

 

=
1
𝒘𝒘

min𝑝𝑝𝑑𝑑𝑝𝑝𝑦𝑦 𝒙𝒙𝑝𝑝  

• We want to find 𝒘𝒘 and 𝑏𝑏 that maximize the margin 

argmax𝒘𝒘,𝑏𝑏
1
𝒘𝒘

min𝑝𝑝𝑑𝑑𝑝𝑝𝑦𝑦 𝒙𝒙𝑝𝑝  

• Solving this problem is hard as it is written 
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We are free to choose a rescaling of 𝒘𝒘 

• If we replace 𝒘𝒘 by 𝑎𝑎𝒘𝒘 and 𝑏𝑏 with 𝑎𝑎𝑎𝑎 
• Then the margin is unchanged 

min𝑝𝑝𝑑𝑑𝑝𝑝
𝑎𝑎𝒘𝒘𝑇𝑇𝒙𝒙𝑝𝑝 + 𝑎𝑎𝑎𝑎

𝑎𝑎 𝒘𝒘
= min𝑝𝑝𝑑𝑑𝑝𝑝

𝒘𝒘𝑇𝑇𝒙𝒙𝑝𝑝 + 𝑏𝑏
𝒘𝒘

 

• So choose 𝑎𝑎 such that min𝑝𝑝𝑑𝑑𝑝𝑝 𝑎𝑎𝒘𝒘𝑇𝑇𝒙𝒙𝑝𝑝 + 𝑎𝑎𝑎𝑎 = 1 
• Which means that for all points 

𝑑𝑑𝑝𝑝 𝒘𝒘𝑇𝑇𝒙𝒙𝑝𝑝 + 𝑏𝑏 ≥ 1 
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Maximum margin 
constrained optimization problem 

• Then the maximum margin optimization becomes 

argmax𝒘𝒘,𝑏𝑏
1
𝒘𝒘

min𝑝𝑝𝑑𝑑𝑝𝑝𝑦𝑦 𝑥𝑥𝑝𝑝  

= argmax𝒘𝒘,𝑏𝑏
1
𝒘𝒘

 

• With the constraints 𝑑𝑑𝑝𝑝 𝒘𝒘𝑇𝑇𝒙𝒙𝑝𝑝 + 𝑏𝑏 ≥ 1 
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Maximum margin 
constrained optimization problem 

• Which is equivalent to  

argmin𝒘𝒘,𝑏𝑏
1
2

𝒘𝒘 2  subject to 𝑑𝑑𝑝𝑝 𝒘𝒘𝑇𝑇𝒙𝒙𝑝𝑝 + 𝑏𝑏 ≥ 1 

• This is a well studied type of problem 
• A quadratic program with linear inequality constraints 
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Detour: Lagrange multipliers  
solve constrained optimization problems 

• Want to maximize a function 𝑓𝑓 𝑥𝑥1, 𝑥𝑥2  
• Subject to the equality constraint 𝑔𝑔 𝑥𝑥1, 𝑥𝑥2 = 0 
• Could solve 𝑔𝑔 𝑥𝑥1, 𝑥𝑥2 = 0 for 𝑥𝑥1 in terms of 𝑥𝑥2 

• But that is hard to do in general (i.e., on computers) 
• Or could use Lagrange multipliers 

• Which are easier to use in general (i.e., on computers) 
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Lagrange multipliers with general 𝒙𝒙 

• In general, we can write 
max𝒙𝒙𝑓𝑓 𝒙𝒙  subject to 𝑔𝑔 𝒙𝒙 = 0 

• Constraint 𝑔𝑔 𝒙𝒙 = 0 defines a 𝐷𝐷 − 1 dimensional 
surface for 𝐷𝐷 dimensional 𝒙𝒙 
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Example: Maximize 𝑓𝑓 𝒙𝒙 = 1 − 𝑥𝑥12 − 𝑥𝑥22 
subject to 𝑔𝑔 𝒙𝒙 = 𝑥𝑥1 + 𝑥𝑥2 − 1 = 0 
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Gradients of 𝑔𝑔 and 𝑓𝑓  
are orthogonal to surface at solution point 
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Gradients of 𝑔𝑔 and 𝑓𝑓 are orthogonal to surface 
at maximum of 𝑓𝑓 

• For 𝑔𝑔 because on all points on the surface 𝑔𝑔 𝒙𝒙 = 0 
• For 𝑓𝑓 because if it wasn’t, you could move along 

the surface in the direction of the gradient to find a 
better maximum 

• Thus 𝛻𝛻𝛻𝛻 and 𝛻𝛻𝑔𝑔 are (anti-)parallel 
• And there must exist a scalar 𝜆𝜆 such that  

𝛻𝛻𝛻𝛻 + 𝜆𝜆𝜆𝜆𝜆𝜆 = 0 
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The Lagrangian function captures the 
constraints on 𝑥𝑥 and on the gradients 

𝐿𝐿 𝒙𝒙, 𝜆𝜆 = 𝑓𝑓 𝒙𝒙 + 𝜆𝜆𝜆𝜆 𝒙𝒙  
• Setting gradient of 𝐿𝐿 with respect to 𝒙𝒙 to 0 gives 

∇𝑓𝑓 + 𝜆𝜆∇𝑔𝑔 = 0 
• Setting partial of 𝐿𝐿 with respect to 𝜆𝜆 to 0 gives 

𝑔𝑔 𝒙𝒙 = 0 
• Thus stationary points of 𝐿𝐿 solve the constrained 

optimization problem 
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Example: Maximize 𝑓𝑓 𝒙𝒙 = 1 − 𝑥𝑥12 − 𝑥𝑥22 
subject to 𝑔𝑔 𝒙𝒙 = 𝑥𝑥1 + 𝑥𝑥2 − 1 = 0 
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Example: Maximize 𝑓𝑓 𝒙𝒙 = 1 − 𝑥𝑥12 − 𝑥𝑥22 
subject to 𝑔𝑔 𝒙𝒙 = 𝑥𝑥1 + 𝑥𝑥2 − 1 = 0 

• So the Lagrangian function is 
𝐿𝐿 𝒙𝒙, 𝜆𝜆 = 𝑓𝑓 𝒙𝒙 + 𝜆𝜆𝜆𝜆 𝒙𝒙  

= 1 − 𝑥𝑥12 − 𝑥𝑥22 + 𝜆𝜆(𝑥𝑥1 + 𝑥𝑥2 − 1) 
• The conditions for 𝐿𝐿 to be stationary are 

𝜕𝜕𝜕𝜕/𝜕𝜕𝑥𝑥1 = −2𝑥𝑥1 + 𝜆𝜆 = 0 
𝜕𝜕𝜕𝜕/𝜕𝜕𝑥𝑥2 = −2𝑥𝑥2 + 𝜆𝜆 = 0 
𝜕𝜕𝜕𝜕/𝜕𝜕𝜆𝜆  = 𝑥𝑥1 + 𝑥𝑥2 − 1 = 0 

• Can solve to find 𝜆𝜆 = 1, 𝑥𝑥1 = 𝑥𝑥2 = 1
2
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Lagrange multipliers can also be used  
with inequality constraints 𝑔𝑔 𝒙𝒙 ≥ 0 
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Lagrange multipliers can also be used  
with inequality constraints 𝑔𝑔 𝒙𝒙 ≥ 0 

• Now two kinds of solutions: 
• If 𝑔𝑔 𝒙𝒙 > 0, then the solution only depends on 𝑓𝑓(𝒙𝒙) 

• Inside constraint surface with ∇𝑓𝑓 = 0 
• Stationary point of 𝐿𝐿(𝒙𝒙, 𝜆𝜆) with 𝜆𝜆 = 0 
• Constraint 𝑔𝑔(𝒙𝒙) is said to be inactive 

• If 𝑔𝑔 𝑥𝑥 = 0, then same as before (with equality 
constraint) 
• On boundary of constraint surface with ∇𝑓𝑓 pointing out 
• Stationary point of 𝐿𝐿(𝒙𝒙, 𝜆𝜆) with 𝜆𝜆 > 0 
• Constraint 𝑔𝑔(𝒙𝒙) is said to be active 
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Lagrange multipliers can also be used  
with inequality constraints 𝑔𝑔 𝒙𝒙 ≥ 0 

• In either case, 𝜆𝜆𝑔𝑔 𝒙𝒙 = 0 
• Thus maximizing 𝑓𝑓(𝒙𝒙) subject to 𝑔𝑔 𝒙𝒙 ≥ 0 is 

obtained by optimizing 𝐿𝐿(𝒙𝒙, 𝜆𝜆) WRT 𝒙𝒙 and 𝜆𝜆 
subject to 

𝑔𝑔 𝒙𝒙 ≥ 0 
𝜆𝜆 ≥ 0 
𝜆𝜆𝜆𝜆 𝒙𝒙 = 0 

• These are known as the Karush-Kuhn-Tucker 
(KKT) conditions 
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Example: Maximize 𝑓𝑓 𝒙𝒙 = 1 − 𝑥𝑥12 − 𝑥𝑥22 
subject to 𝑔𝑔 𝒙𝒙 = 𝑥𝑥1 + 𝑥𝑥2 − 1 ≥ 0 
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Example: Maximize 𝑓𝑓 𝒙𝒙 = 1 − 𝑥𝑥12 − 𝑥𝑥22 
subject to 𝑔𝑔 𝒙𝒙 = 𝑥𝑥1 + 𝑥𝑥2 − 1 ≥ 0 

• So the Lagrangian function is 
𝐿𝐿 𝒙𝒙, 𝜆𝜆 = 1 − 𝑥𝑥12 − 𝑥𝑥22 + 𝜆𝜆(𝑥𝑥1 + 𝑥𝑥2 − 1) 

• The conditions for 𝐿𝐿 to be stationary are 
𝜕𝜕𝜕𝜕/𝜕𝜕𝑥𝑥1 = −2𝑥𝑥1 + 𝜆𝜆 = 0 
𝜕𝜕𝜕𝜕/𝜕𝜕𝑥𝑥2 = −2𝑥𝑥2 + 𝜆𝜆 = 0 
𝜕𝜕𝜕𝜕/𝜕𝜕𝜆𝜆  = 𝑥𝑥1 + 𝑥𝑥2 − 1 = 0 

• Can solve to find 𝜆𝜆 = 1, 𝑥𝑥1 = 𝑥𝑥2 = 1
2
 

• Which still satisfies KKT conditions 
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Example: Maximize 𝑓𝑓 𝒙𝒙 = 1 − 𝑥𝑥12 − 𝑥𝑥22 
subject to 𝑔𝑔 𝒙𝒙 = −𝑥𝑥1 − 𝑥𝑥2 + 1 ≥ 0 
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Example: Maximize 𝑓𝑓 𝒙𝒙 = 1 − 𝑥𝑥12 − 𝑥𝑥22 
subject to 𝑔𝑔 𝒙𝒙 = −𝑥𝑥1 − 𝑥𝑥2 + 1 ≥ 0 

• So the Lagrangian function is 
𝐿𝐿 𝒙𝒙, 𝜆𝜆 = 1 − 𝑥𝑥12 − 𝑥𝑥22 + 𝜆𝜆(−𝑥𝑥1 − 𝑥𝑥2 + 1) 

• The conditions for 𝐿𝐿 to be stationary are 
𝜕𝜕𝜕𝜕/𝜕𝜕𝑥𝑥1 = −2𝑥𝑥1 − 𝜆𝜆 = 0 
𝜕𝜕𝜕𝜕/𝜕𝜕𝑥𝑥2 = −2𝑥𝑥2 − 𝜆𝜆 = 0 
𝜕𝜕𝜕𝜕/𝜕𝜕𝜆𝜆  = 𝑥𝑥1 + 𝑥𝑥2 − 1 = 0 

• Can solve to find 𝜆𝜆 = −1 
• which does not satisfy KKT condition 𝜆𝜆 ≥ 0 

• Instead use unconstrained solution 𝑥𝑥1 = 𝑥𝑥2 = 0 
• which does satisfy KKT conditions 
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Multiple constraints  
each get their own Lagrange multiplier 

• Maximize 𝑓𝑓 𝒙𝒙  subject to 𝑔𝑔𝑖𝑖 𝒙𝒙 = 0 and ℎ𝑗𝑗 𝒙𝒙 ≥ 0 
• Leads to the Lagrangian function 

𝐿𝐿 𝒙𝒙,𝝀𝝀,𝝁𝝁 = 𝑓𝑓 𝒙𝒙 + �𝜆𝜆𝑖𝑖𝑔𝑔𝑖𝑖 𝒙𝒙
𝑖𝑖

+ �𝜇𝜇𝑗𝑗ℎ𝑗𝑗 𝒙𝒙
𝑗𝑗

 

• Still solve for ∇𝐿𝐿 𝒙𝒙,𝝀𝝀,𝝁𝝁 = 0 
• Trickier in general to figure out which ℎ𝑗𝑗 𝒙𝒙  

constraints should be active 
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Minimizing 𝑓𝑓(𝒙𝒙) with an inequality constraint 
requires a slightly different Lagrangian 

• Minimize WRT 𝒙𝒙 
𝐿𝐿 𝒙𝒙, 𝜆𝜆 = 𝑓𝑓 𝒙𝒙 − 𝜆𝜆𝜆𝜆(𝒙𝒙) 

• Still subject to 
𝑔𝑔 𝒙𝒙 ≥ 0 
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Summary of Lagrange multipliers  
with multiple inequality constraints 

• Goal: maximize 𝑓𝑓 𝒙𝒙  subject to 𝑔𝑔𝑖𝑖 𝒙𝒙 ≥ 0 
• Write down Lagrangian function  

𝐿𝐿 𝒙𝒙, 𝜆𝜆 = 𝑓𝑓 𝒙𝒙 + �𝜆𝜆𝑖𝑖𝑔𝑔𝑖𝑖 𝒙𝒙
𝑖𝑖

 

• Find points where ∇𝐿𝐿 𝒙𝒙, 𝜆𝜆 = 0 
• Keep points that satisfy constraints 𝑔𝑔𝑖𝑖 𝒙𝒙 ≥ 0 
• Figure out which KKT conditions should be active 

• Don’t need to try all 2𝐼𝐼 combinations for SVMs 
• Because 𝑓𝑓 𝒙𝒙  and 𝑔𝑔 𝒙𝒙  form a “quadratic program” 
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Back to SVMs: Maximum margin solution  
is a fixed point of the Lagrangian function 

• Recall, the maximum margin hyperplane is 

argmin𝒘𝒘,𝑏𝑏
1
2

𝒘𝒘 2  subject to 𝑑𝑑𝑝𝑝 𝒘𝒘𝑇𝑇𝒙𝒙𝑝𝑝 + 𝑏𝑏 ≥ 1 

• Minimization of a quadratic function subject to multiple 
linear inequality constraints 

• Will use Lagrange multipliers, 𝑎𝑎𝑝𝑝, to write 
Lagrangian function 

𝐿𝐿 𝒘𝒘, 𝑏𝑏,𝒂𝒂 =
1
2

𝒘𝒘 2 −�𝑎𝑎𝑝𝑝(𝑑𝑑𝑝𝑝 𝒘𝒘𝑇𝑇𝒙𝒙𝑝𝑝 + 𝑏𝑏 − 1)
𝑝𝑝

 

• Note that 𝒙𝒙𝑝𝑝 and 𝑑𝑑𝑝𝑝 are fixed for the optimization 
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