CSE 5526: Introduction to Neural Networks

Radial Basis Function (RBF) Networks

Function approximation

- We have been using MLPs as pattern classifiers
- But in general, they are function approximators
- Depending on output layer nonlinearity
- And error function being minimized
- As a function approximator, MLPs are nonlinear, semiparametric, and universal

Function approximation

- Radial basis function (RBF) networks are similar function approximators
- Also nonlinear, semiparametric, universal
- Can also be visualized as layered network of nodes
- Easier to train than MLPs
- Do not require backpropagation
- But do not necessarily find an optimal solution

RBF net illustration

Function approximation background

- Before getting into RBF networks, let's discuss approximating scalar functions of a single variable
- Weierstrass approximation theorem: any continuous real function in an interval can be approximated arbitrarily well by a set of polynomials
- Taylor expansion approximates any differentiable function by a polynomial in the neighborhood around a point
- Fourier series gives a way of approximating any periodic function by a sum of sines and cosines

Linear projection

- Approximate function $\mathrm{f}(\mathrm{x})$ by a linear combination of simpler functions

$$
F(\mathbf{x})=\sum_{j} w_{j} \varphi_{j}(\mathbf{x})
$$

- If w_{j} 's can be chosen so that approximation error is arbitrarily small for any function $\mathrm{f}(\mathrm{x})$ over the domain of interest, then $\left\{\varphi_{j}\right\}$ has the property of universal approximation, or $\left\{\varphi_{j}\right\}$ is complete

Example incomplete basis: sinc

$\operatorname{sinc}(x)=\frac{\sin (\pi x)}{\pi x} \quad \varphi_{j}(x)=\operatorname{sinc}\left(x-\mu_{j}\right)$

- Can approximate any smooth function

FIGURE 5-4 Decomposition by sinc functions

Example orthogonal complete basis: sinusoids

$$
\begin{gathered}
\varphi_{2 n}(x)=\sin (2 \pi n \omega x) \\
\varphi_{2 n+1}(x)=\cos (2 \pi n \omega x) \\
\text { Complete on the interval }[0,1]
\end{gathered}
$$

Square wave

FIGURE 5-5 Decomposition by sine waves

Example orthogonal complete basis: Chebyshev polynomials

$$
T_{0}(x)=1 \quad T_{1}(x)=x \quad T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)
$$

Complete on the interval $[0,1]$

$$
T_{2}(x)=2 x^{2}-1
$$

$$
\begin{array}{r}
T_{3}(x)=4 x^{3}-3 x \\
\text { etc. }
\end{array}
$$

"Chebyshev Polynomials of the 1st Kind ($n=0-5, x=(-1,1)$)" by Inductiveload - Own work. Licensed under Public domain via Wikimedia Commons -

Radial basis functions

- A radial basis function (RBF) is a basis function of the form $\varphi_{j}(\boldsymbol{x})=\varphi\left(\left\|\boldsymbol{x}-\boldsymbol{\mu}_{j}\right\|\right)$
- Where $\varphi(r)$ is positive w/monotonic derivative for $r>0$
- Consider a Gaussian RBF

$$
\varphi_{j}(\mathbf{x})=\exp \left(-\frac{1}{2 \sigma^{2}}\left\|\mathbf{x}-\mathbf{x}_{j}\right\|^{2}\right)=G\left(\left\|x-\boldsymbol{x}_{j}\right\|\right)
$$

- A local basis function, falling off from the center

Radial basis functions (cont.)

- Thus approximation by Gaussian RBF becomes

$$
F(\mathbf{x})=\sum_{j} w_{j} G\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|\right)
$$

- Gaussians are universal approximators
- I.e., they form a complete basis

FIGURE 5-8 Approximation by RBFs in one dimension

RBF net illustration

Remarks (cont.)

- Other RBFs exist, but we won’t be using them
- Multiquadrics

$$
\varphi(x)=\sqrt{x^{2}+c^{2}}
$$

- Inverse multiquadrics

$$
\varphi(x)=\frac{1}{\sqrt{x^{2}+c^{2}}}
$$

- Micchelli's theorem (1986)
- Let $\left\{\boldsymbol{x}_{i}\right\}$ be a set of N distinct points, $\varphi(\cdot)$ be an RBF
- Then the matrix $\phi_{i j}=\varphi\left(\left\|\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{x}_{\boldsymbol{j}}\right\|\right)$ is non-singular

Four questions to answer for RBF nets

- If we want to use Gaussian RBFs to approximate a function specified by training data

1. How do we choose the Gaussian centers?
2. How do we determine the Gaussian widths?
3. How do we determine the weights w_{j} ?
4. How do we select the number of bases?

1. How do we choose the Gaussian centers?

- Easy way: select K data points at random
- Potentially better way: unsupervised clustering, e.g. using the K-means algorithm

K-means algorithm

- Goal: Divide N input patterns into K clusters with minimum total variance
- In other words, partition patterns into K clusters C_{j} to minimize the following cost function

$$
J=\sum_{j=1}^{K} \sum_{i \in C_{j}}\left\|\mathbf{x}_{i}-\mathbf{u}_{j}\right\|^{2}
$$

where $\mathbf{u}_{j}=\frac{1}{\left\|C_{j}\right\|} \sum_{i \in C_{j}} \mathbf{x}_{i}$ is the mean (center) of cluster j

K-means algorithm

1. Choose a set of K cluster centers randomly from the input patterns
2. Assign the N input patterns to the K clusters using the squared Euclidean distance rule:
\mathbf{x} is assigned to C_{j} if $\left\|\mathbf{x}-\mathbf{u}_{j}\right\|^{2} \leq\left\|\mathbf{x}-\mathbf{u}_{i}\right\|^{2}$ for all $i \neq j$
3. Update cluster centers

$$
\mathbf{u}_{j}=\frac{1}{\left|C_{j}\right|} \sum_{i \in C_{j}} \mathbf{x}_{i}
$$

4. If any cluster center changes, go to step 2 ; else stop

K-means illustration

From Bishop (2006)

K-means cost function

From Bishop (2006)

K-means algorithm remarks

- The K-means algorithm always converges, but only to a local minimum

2. How to determine the Gaussian widths?

- Once cluster centers are determined, the variance within each cluster can be set to

$$
\sigma_{j}^{2}=\frac{1}{\left|C_{j}\right|} \sum_{i \in C_{j}}\left\|\mathbf{u}_{j}-\mathbf{x}_{i}\right\|^{2}
$$

- Remark: to simplify the RBF net design, all clusters can assume the same Gaussian width:

$$
\sigma=\frac{d_{\mathrm{max}}}{\sqrt{2 K}}
$$

where $d_{\max }$ is the maximum distance between the K cluster centers

3. How do we determine the weights w_{j} ?

- With the hidden layer decided, weight training can be treated as a linear regression problem

$$
\Phi w=d
$$

- Can solve using the LMS algorithm
- The textbook discusses recursive least squares (RLS) solutions
- Can also solve in one shot using the pseudo-inverse

$$
\boldsymbol{w}=\boldsymbol{\Phi}^{+} \boldsymbol{d}=\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{T} \boldsymbol{d}
$$

- Note that a bias term needs to be included in $\boldsymbol{\Phi}$

4. How do we select the number of bases?

- The same problem as that of selecting the size of an MLP for classification
- The short answer: (cross-)validation
- The long answer: by balancing bias and variance

Bias and variance

- Bias: training error
- Difference between desired output and actual output for a particular training sample
- Variance: generalization error
- difference between the learned function from a particular training sample and the function derived from all training samples
- Two extreme cases: zero bias and zero variance
- A good-sized model is one where both bias and variance are low

RBF net training summary

- To train

1. Choose the Gaussian centers using K-means, etc.
2. Determine the Gaussian widths as the variance of each cluster, or using $d_{\text {max }}$
3. Determine the weights w_{j} using linear regression

- Select the number of bases using (cross-)validation

RBF net illustration

Comparison between RBF net and MLP

- For RBF nets, bases are local, while for MLP, "bases" are global
- Generally, more bases are needed for an RBF net than hidden units for an MLP
- Training is more efficient for RBF nets

XOR problem, again

- RBF nets can also be applied to pattern
classification problems
- XOR problem revisited
$(0,1) \quad(1,1)$
$(0,0) \quad(1,0)$
(a)

Let
$\varphi_{1}(x)=\exp \left(-\left\|x-t_{1}\right\|^{2}\right)$
$\varphi_{2}(x)=\exp \left(-\left\|x-t_{2}\right\|^{2}\right)$

Where

$$
\begin{aligned}
& t_{1}=[1,1]^{T} \\
& t_{2}=[0,0]^{T}
\end{aligned}
$$

XOR problem (cont.)

TABLE 5.1	Specification of the Hidden Functions for the XOR Problem of Example 1	
Input Pattern	First Hidden Function	Second Hidden Function
\mathbf{x}	$\varphi_{1}(\mathbf{x})$	$\varphi_{2}(\mathbf{x})$
$(1,1)$	1	0.1353
$(0,1)$	0.3678	0.3678
$(0,0)$	0.1353	1
$(1,0)$	0.3678	0.3678

XOR problem, again

- RBF nets can also be applied to pattern classification problems
- XOR problem revisited

RBF net on double moon data, $\mathrm{d}=-5$

(b) Testing result

RBF net on double moon data, $\mathrm{d}=-5$

RBF net on double moon data, $\mathrm{d}=-6$

RBF net on double moon data, $\mathrm{d}=-6$

