CSE 5526: Introduction to Neural Networks

Regression and the LMS Algorithm

Problem statement

Linear regression with one variable

- Given a set of N pairs of data $\left\{x_{i}, d_{i}\right\}$, approximate d by a linear function of x (regressor)
i.e.

$$
\begin{aligned}
d & \approx w x+b \\
d_{i} & =y_{i}+\varepsilon_{i}=\varphi\left(w x_{i}+b\right)+\varepsilon_{i} \\
& =w x_{i}+b+\varepsilon_{i}
\end{aligned}
$$

where the activation function $\varphi(x)=x$ is a linear function, corresponding to a linear neuron. y is the output of the neuron, and

$$
\varepsilon_{i}=d_{i}-y_{i}
$$

is called the regression (expectational) error

Linear regression (cont.)

- The problem of regression with one variable is how to choose w and b to minimize the regression error
- The least squares method aims to minimize the square error:

$$
E=\frac{1}{2} \sum_{i=1}^{N} \varepsilon_{i}^{2}=\frac{1}{2} \sum_{i=1}^{N}\left(d_{i}-y_{i}\right)^{2}
$$

Linear regression (cont.)

- To minimize the two-variable square function, set

$$
\left\{\begin{array}{l}
\frac{\partial E}{\partial b}=0 \\
\frac{\partial E}{\partial w}=0
\end{array}\right.
$$

Linear regression (cont.)

$$
\begin{aligned}
\frac{\partial E}{\partial b} & =\frac{1}{2} \sum_{i} \frac{\partial}{\partial b}\left(d_{i}-w x_{i}-b\right)^{2} \\
& =-\sum_{i}\left(d_{i}-w x_{i}-b\right)=0 \\
\frac{\partial E}{\partial w} & =\frac{1}{2} \sum_{i} \frac{\partial}{\partial w}\left(d_{i}-w x_{i}-b\right)^{2} \\
& =-\sum_{i}\left(d_{i}-w x_{i}-b\right) x_{i}=0
\end{aligned}
$$

Analytic solution approaches

- Solve one equation for b in terms of w
- Substitute into other equation, solve for w
- Substitute solution for w back into equation for b
- Setup system of equations in matrix notation
- Solve matrix equation
- Rewrite problem in matrix form
- Compute matrix gradient
- Solve for w

Linear regression (cont.)

- Hence

$$
\begin{gathered}
b=\frac{\left(\sum_{i} x_{i}^{2}\right)\left(\sum_{i} d_{i}\right)-\left(\sum_{i} x_{i}\right)\left(\sum_{i} x_{i} d_{i}\right)}{N \sum_{i}\left(x_{i}-\bar{x}\right)^{2}} \\
w=\frac{\sum_{i}\left(x_{i}-\bar{x}\right)\left(d_{i}-\bar{d}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}
\end{gathered}
$$

where an overbar (i.e. \bar{X}) indicates the mean

Linear regression in matrix notation

- Let $\boldsymbol{X}=\left[\begin{array}{llll}\boldsymbol{x}_{1} & \boldsymbol{x}_{2} & \boldsymbol{x}_{\mathbf{3}} & \ldots \\ \boldsymbol{x}_{N}\end{array}\right]^{\boldsymbol{T}}$
- Then the model predictions are $\boldsymbol{y}=\boldsymbol{X} \boldsymbol{w}$
- And the mean square error can be written $E(\boldsymbol{w})=\|\boldsymbol{d}-\boldsymbol{y}\|^{2}=\|\boldsymbol{d}-\boldsymbol{X} \boldsymbol{w}\|^{2}$
- To find the optimal w, set the gradient of the error with respect to w equal to 0 and solve for w

$$
\frac{\partial}{\partial w} E(w)=0=\frac{\partial}{\partial w}\|\boldsymbol{d}-X \boldsymbol{w}\|^{2}
$$

- See The Matrix Cookbook (Petersen \& Pedersen)

Linear regression in matrix notation

- $\frac{\partial}{\partial w} E(\boldsymbol{w})=\frac{\partial}{\partial w}\|\boldsymbol{d}-X \boldsymbol{w}\|^{2}$

$$
\begin{aligned}
& =\frac{\partial}{\partial \boldsymbol{w}}(\boldsymbol{d}-\boldsymbol{X} \boldsymbol{w})^{T}(\boldsymbol{d}-\boldsymbol{X} \boldsymbol{w}) \\
& =\frac{\boldsymbol{\partial}}{\partial \boldsymbol{w}} \boldsymbol{d}^{T} \boldsymbol{d}-\mathbf{2} \boldsymbol{w}^{T} \boldsymbol{X}^{T} \boldsymbol{d}+\boldsymbol{w}^{T} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{w} \\
& =-2 \boldsymbol{X}^{T} \boldsymbol{d}-2 \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{w}
\end{aligned}
$$

- $\frac{\partial}{\partial w} E(\boldsymbol{w})=0=-2 \boldsymbol{X}^{T} \boldsymbol{d}-2 \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{w}$

$$
\Rightarrow \boldsymbol{w}=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{d}
$$

- Much cleaner!

Finding optimal parameters via search

- Often there is no closed form solution for $\frac{\partial}{\partial \boldsymbol{w}} E(\boldsymbol{w})=0$
- We can still use the gradient in a numerical solution
- We will still use the same example to permit comparison
- For simplicity's sake, set $b=0$

$$
E(w)=\frac{1}{2} \sum_{i=1}^{N}\left(d_{i}-w x_{i}\right)^{2}
$$

$E(w)$ is called a cost function

Cost function

- Question: how can we update w from w_{0} to minimize E ?

Gradient and directional derivatives

- Consider a two-variable function $f(x, y)$. Its gradient at the point $\left(x_{0}, y_{0}\right)^{T}$ is defined as

$$
\begin{aligned}
\nabla \mathrm{f} & =\left.\left(\frac{\partial f(x, y)}{\partial x}, \frac{\partial f(x, y)}{\partial y}\right)^{T}\right|_{\substack{x=x_{0} \\
y=y_{0}}} \\
& =f_{x}\left(x_{0}, y_{0}\right) \mathrm{u}_{x}+f_{y}\left(x_{0}, y_{0}\right) \mathrm{u}_{y}
\end{aligned}
$$

where \mathbf{u}_{x} and \mathbf{u}_{y} are unit vectors in the x and y directions, and $f_{x}=\partial f / \partial x$ and $f_{y}=\partial f / \partial y$

Gradient and directional derivatives (cont.)

- At any given direction, $\mathrm{u}=a \mathrm{u}_{x}+b \mathrm{u}_{y}$, with $\sqrt{a^{2}+b^{2}}=1$, the directional derivative at $\left(x_{0}, y_{0}\right)^{T}$ along the unit vector u is

$$
\begin{aligned}
D_{\mathrm{u}} f_{x}\left(x_{0}, y_{0}\right) & =\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h a, y_{0}+h b\right)-f\left(x_{0}, y_{0}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[f\left(x_{0}+h a, y_{0}+h b\right)-f\left(x_{0}, y_{0}+h b\right)\right]+\left[f\left(x_{0}, y_{0}+h b\right)-f\left(x_{0}, y_{0}\right)\right]}{h} \\
& =a f_{x}\left(x_{0}, y_{0}\right)+b f_{y}\left(x_{0}, y_{0}\right) \\
& =\nabla \mathrm{f}\left(x_{0}, y_{0}\right)^{T} \mathrm{u}
\end{aligned}
$$

- Which direction has the greatest slope? The gradient because of the dot product!

Gradient and directional derivatives (cont.)

- Example: $\mathrm{f}(\mathrm{x}, \mathrm{y})=\frac{5}{2} x^{2}-3 x y+\frac{5}{2} y^{2}+2 x+2 y$

Gradient and directional derivatives (cont.)

- Example: $\mathrm{f}(\mathrm{x}, \mathrm{y})=\frac{5}{2} x^{2}-3 x y+\frac{5}{2} y^{2}+2 x+2 y$

Gradient and directional derivatives (cont.)

- The level curves of a function $f(x, y)$ are curves such that $f(x, y)=k$
- Thus, the directional derivative along a level curve is 0

$$
D_{\mathrm{u}}=\nabla \mathrm{f}\left(x_{0}, y_{0}\right)^{T} \mathrm{u}=0
$$

- And the gradient vector is perpendicular to the level curve

Gradient and directional derivatives (cont.)

- The gradient of a cost function is a vector with the dimension of w that points to the direction of maximum E increase and with a magnitude equal to the slope of the tangent of the cost function along that direction
- Can the slope be negative?

Gradient illustration

Gradient descent

- Minimize the cost function via gradient (steepest) descent a case of hill-climbing

$$
w(n+1)=w(n)-\eta \nabla E(n)
$$

n : iteration number
η : learning rate

- See previous figure

Gradient descent (cont.)

- For the mean-square-error cost function and linear neurons

$$
\begin{aligned}
& E(n)=\frac{1}{2} e^{2}(n)=\frac{1}{2}[d(n)-y(n)]^{2} \\
& \\
& =\frac{1}{2}[d(n)-w(n) x(n)]^{2} \\
& \nabla E(n)=\frac{\partial E}{\partial w(n)}=\frac{1}{2} \frac{\partial e^{2}(n)}{\partial w(n)} \\
& \\
& =-e(n) x(n)
\end{aligned}
$$

Gradient descent (cont.)

- Hence

$$
\begin{aligned}
w(n+1) & =w(n)+\eta e(n) x(n) \\
& =w(n)+\eta[d(n)-y(n)] x(n)
\end{aligned}
$$

- This is the least-mean-square (LMS) algorithm, or the Widrow-Hoff rule

Stochastic gradient descent

- If the cost function is of the form

$$
E(w)=\sum_{n=1}^{N} E_{n}(w)
$$

- Then one gradient descent step requires computing

$$
\Delta \mathrm{w}=\frac{\partial}{\partial w} E(w)=\sum_{n=1}^{N} \frac{\partial}{\partial w} E_{n}(w)
$$

- Which means computing $E(w)$ or its gradient for every data point
- Many steps may be required to reach an optimum

Stochastic gradient descent

- It is generally much more computationally efficient to use

$$
\Delta w=\sum_{n=n_{i}}^{n_{i}+n_{b}-1} \frac{\partial}{\partial w} E_{n}(w)
$$

- For small values of n_{b}
- This update rule may converge in many fewer passes through the data (epochs)

Stochastic gradient descent example

Stochastic gradient descent error functions

Stochastic gradient descent gradients

Stochastic gradient descent animation

Gradient descent animation

Multi-variable LMS

- The analysis for the one-variable case extends to the multivariable case

$$
\begin{gathered}
E(n)=\frac{1}{2}\left[d(n)-\mathbf{w}^{T}(n) \mathbf{x}(n)\right]^{2} \\
\nabla E(\mathrm{w})=\left(\frac{\partial E}{\partial w_{0}}, \frac{\partial E}{\partial w_{1}}, \ldots, \frac{\partial E}{\partial w_{m}}\right)^{T}
\end{gathered}
$$

where $w_{0}=b$ (bias) and $x_{0}=1$, as done for perceptron learning

Multi-variable LMS (cont.)

- The LMS algorithm

$$
\begin{aligned}
\mathbf{w}(n+1) & =\mathbf{w}(n)-\eta \nabla \mathbf{E}(n) \\
& =\mathbf{w}(n)+\eta e(n) \mathbf{x}(n) \\
& =\mathbf{w}(n)+\eta[d(n)-y(n)] \mathbf{x}(n)
\end{aligned}
$$

LMS algorithm remarks

- The LMS rule is exactly the same equation as the perceptron learning rule
- Perceptron learning is for nonlinear (M-P) neurons, whereas LMS learning is for linear neurons.
- i.e., perceptron learning is for classification and LMS is for function approximation
- LMS should be less sensitive to noise in the input data than perceptrons
- On the other hand, LMS learning converges slowly
- Newton's method changes weights in the direction of the minimum $E(\mathrm{w})$ and leads to fast convergence.
- But it is not online and is computationally expensive

Stability of adaptation

(a)

(b)

- When η is too small, learning converges slowly
- When η is too large, learning doesn't converge

Learning rate annealing

- Basic idea: start with a large rate but gradually decrease it
- Stochastic approximation

$$
\eta(n)=\frac{c}{}
$$

n
c is a positive parameter

Learning rate annealing (cont.)

- Search-then-converge

$$
\eta(n)=\frac{\eta_{0}}{1+(n / \tau)}
$$

η_{0} and τ are positive parameters
-When n is small compared to τ, learning rate is approximately constant \bullet When n is large compared to τ, learning rule schedule roughly follows stochastic approximation

Rate annealing illustration

Nonlinear neurons

- To extend the LMS algorithm to nonlinear neurons, consider differentiable activation function φ at iteration n

$$
\begin{aligned}
E(n) & =\frac{1}{2}[d(n)-y(n)]^{2} \\
& =\frac{1}{2}\left[d(n)-\varphi\left(\sum_{j} w_{j} x_{j}(n)\right)\right]^{2}
\end{aligned}
$$

Nonlinear neurons (cont.)

- By chain rule of differentiation

$$
\begin{aligned}
\frac{\partial E}{\partial w_{j}} & =\frac{\partial E}{\partial y} \frac{\partial y}{\partial v} \frac{\partial v}{\partial w_{j}} \\
& =-[d(n)-y(n)] \varphi^{\prime}(v(n)) x_{j}(n) \\
& =-e(n) \varphi^{\prime}(v(n)) x_{j}(n)
\end{aligned}
$$

Nonlinear neurons (cont.)

- Gradient descent gives

$$
\begin{aligned}
w_{j}(n+1) & =w_{j}(n)+\eta e(n) \varphi^{\prime}(v(n)) x_{j}(n) \\
& =w_{j}(n)+\eta \delta(n) x_{j}(n)
\end{aligned}
$$

- The above is called the delta (δ) rule
- If we choose a logistic sigmoid for φ

$$
\varphi(v)=\frac{1}{1+\exp (-a v)}
$$

then

$$
\varphi^{\prime}(v)=a \varphi(v)[1-\varphi(v)] \quad \text { (see textbook) }
$$

Role of activation function

- The role of φ^{\prime} : weight update is most sensitive when v is near zero

