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CSE 5526: Introduction to Neural Networks 

Regression and  
the LMS Algorithm 
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Problem statement 



CSE 5526: Regression 3 

Linear regression with one variable 

• Given a set of N pairs of data {xi, di}, approximate d by a 
linear function of x (regressor) 
i.e. 
 
 
or 
 
 
 
where the activation function φ(x) = x is a linear function, 
corresponding to a linear neuron. y is the output of the neuron, and 
 
 
 
is called the regression (expectational) error 
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Linear regression (cont.) 

• The problem of regression with one variable is how to 
choose w and b to minimize the regression error 
 

• The least squares method aims to minimize the square error: 
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Linear regression (cont.) 

• To minimize the two-variable square function, set 
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Linear regression (cont.) 
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Analytic solution approaches 

• Solve one equation for b in terms of w 
• Substitute into other equation, solve for w 
• Substitute solution for w back into equation for b 

• Setup system of equations in matrix notation 
• Solve matrix equation 

• Rewrite problem in matrix form 
• Compute matrix gradient 
• Solve for w 
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Linear regression (cont.) 

• Hence 
 
 
 
 
 
 
 
 
 
 

     where an overbar (i.e.    ) indicates the mean 
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Linear regression in matrix notation 

• Let 𝑿𝑿 = 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 …𝒙𝒙𝑵𝑵 𝑻𝑻 
• Then the model predictions are 𝒚𝒚 = 𝑿𝑿𝑿𝑿 
• And the mean square error can be written 
𝐸𝐸 𝑿𝑿 = 𝒅𝒅 − 𝒚𝒚 2 = 𝒅𝒅 − 𝑿𝑿𝑿𝑿 2 

• To find the optimal w, set the gradient of the error 
with respect to w equal to 0 and solve for w 

 𝜕𝜕
𝜕𝜕𝑿𝑿
𝐸𝐸 𝑿𝑿 = 0 = 𝜕𝜕

𝜕𝜕𝑿𝑿
𝒅𝒅 − 𝑿𝑿𝑿𝑿 2  

• See The Matrix Cookbook (Petersen & Pedersen) 
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Linear regression in matrix notation 

• 𝜕𝜕
𝜕𝜕𝑿𝑿
𝐸𝐸 𝑿𝑿 =  𝜕𝜕

𝜕𝜕𝑿𝑿
𝒅𝒅 − 𝑿𝑿𝑿𝑿 2  

=
𝜕𝜕
𝜕𝜕𝑿𝑿

𝒅𝒅 − 𝑿𝑿𝑿𝑿 𝑇𝑇 𝒅𝒅 − 𝑿𝑿𝑿𝑿  

=
𝜕𝜕
𝜕𝜕𝑿𝑿

𝒅𝒅𝑇𝑇𝒅𝒅 − 𝟐𝟐𝑿𝑿𝑇𝑇𝑿𝑿𝑇𝑇𝒅𝒅 + 𝑿𝑿𝑇𝑇𝑿𝑿𝑇𝑇𝑿𝑿𝑿𝑿 

= −2𝑿𝑿𝑇𝑇𝒅𝒅 − 2𝑿𝑿𝑇𝑇𝑿𝑿𝑿𝑿 

• 𝜕𝜕
𝜕𝜕𝑿𝑿
𝐸𝐸 𝑿𝑿 = 0 = −2𝑿𝑿𝑇𝑇𝒅𝒅 − 2𝑿𝑿𝑇𝑇𝑿𝑿𝑿𝑿 

⇒ 𝑿𝑿 = 𝑿𝑿𝑇𝑇𝑿𝑿 −1𝑿𝑿𝑇𝑇𝒅𝒅 
• Much cleaner! 
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Finding optimal parameters via search 

• Often there is no closed form solution for 𝜕𝜕
𝜕𝜕𝑿𝑿
𝐸𝐸 𝑿𝑿 = 0 

• We can still use the gradient in a numerical solution 
• We will still use the same example to permit comparison 
• For simplicity’s sake, set b = 0 

 
 
 

 
E(w) is called a cost function 
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Cost function 

w 

E(w) 

w* 

Emin 

 Question: how can we update w from w0 to minimize E? 

w0 
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Gradient and directional derivatives 

• Consider a two-variable function f(x, y). Its gradient at the 
point (x0, y0)T is defined as 
 
 

 
 
 
 
 
 
where ux and uy are unit vectors in the x and y directions, and 
                   and  
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Gradient and directional derivatives (cont.) 

• At any given direction, u = aux + buy, with                     , the 
directional derivative at (x0, y0)T along the unit vector u is 
 
 
 
 
 
 
 
• Which direction has the greatest slope? The gradient because of the 

dot product! 
 

u),(f

),(),(

)],(),([)],(),([lim

),(),(lim),(

00

0000

00000000

0

0000

000u

T

yx

h

hx

yx

yxbfyxaf
h

yxfhbyxfhbyxfhbyhaxf
h

yxfhbyhaxfyxfD

∇=

+=

−+++−++
=

−++
=

→

→

122 =+ ba



CSE 5526: Regression 15 

Gradient and directional derivatives (cont.) 

• Example: f(x, y) = 5
2
𝑥𝑥2 − 3𝑥𝑥𝑥𝑥 + 5

2
𝑥𝑥2 + 2𝑥𝑥 + 2𝑥𝑥 
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Gradient and directional derivatives (cont.) 

• Example: f(x, y) = 5
2
𝑥𝑥2 − 3𝑥𝑥𝑥𝑥 + 5

2
𝑥𝑥2 + 2𝑥𝑥 + 2𝑥𝑥 
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Gradient and directional derivatives (cont.) 

• The level curves of a function 𝑓𝑓(𝑥𝑥,𝑥𝑥) are curves such that 
𝑓𝑓 𝑥𝑥,𝑥𝑥 = 𝑘𝑘 

• Thus, the directional derivative along a level curve is 0 
 
 
 

• And the gradient vector is perpendicular to the level curve 
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Gradient and directional derivatives (cont.) 

• The gradient of a cost function is a vector with the 
dimension of w that points to the direction of maximum E 
increase and with a magnitude equal to the slope of the 
tangent of the cost function along that direction 
• Can the slope be negative? 
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Gradient illustration 

w 
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Gradient descent 

• Minimize the cost function via gradient (steepest) descent – 
a case of hill-climbing 

 
 
 
n: iteration number 
η: learning rate 
 
•See previous figure 
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Gradient descent (cont.) 

• For the mean-square-error cost function and linear neurons 
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Gradient descent (cont.) 

• Hence 
 
 
 
 
 
• This is the least-mean-square (LMS) algorithm, or the Widrow-Hoff 

rule 
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Stochastic gradient descent 

• If the cost function is of the form 

𝐸𝐸 𝑤𝑤 = �𝐸𝐸𝑛𝑛 𝑤𝑤
𝑁𝑁

𝑛𝑛=1

 

• Then one gradient descent step requires computing 

Δw =
𝜕𝜕
𝜕𝜕𝑤𝑤

𝐸𝐸 𝑤𝑤 = �
𝜕𝜕
𝜕𝜕𝑤𝑤

𝐸𝐸𝑛𝑛 𝑤𝑤
𝑁𝑁

𝑛𝑛=1

 

• Which means computing 𝐸𝐸(𝑤𝑤) or its gradient for 
every data point 

• Many steps may be required to reach an optimum 
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Stochastic gradient descent 

• It is generally much more computationally efficient 
to use 

Δ𝑤𝑤 = �
𝜕𝜕
𝜕𝜕𝑤𝑤

𝐸𝐸𝑛𝑛 𝑤𝑤
𝑛𝑛𝑖𝑖+𝑛𝑛𝑏𝑏−1

𝑛𝑛=𝑛𝑛𝑖𝑖

 

• For small values of 𝑛𝑛𝑏𝑏 
• This update rule may converge in many fewer 

passes through the data (epochs) 
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Stochastic gradient descent example 
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Stochastic gradient descent error functions 
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Stochastic gradient descent gradients 
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Stochastic gradient descent animation 
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Gradient descent animation 
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Multi-variable LMS 

• The analysis for the one-variable case extends to the multi-
variable case 
 
 
 
 
 
 
 
 
where w0= b (bias) and x0 = 1, as done for perceptron learning 
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Multi-variable LMS (cont.) 

• The LMS algorithm 
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LMS algorithm remarks 

• The LMS rule is exactly the same equation as the 
perceptron learning rule 

• Perceptron learning is for nonlinear (M-P) neurons, 
whereas LMS learning is for linear neurons.  
• i.e., perceptron learning is for classification and LMS is 

for function approximation 
• LMS should be less sensitive to noise in the input 

data than perceptrons 
• On the other hand, LMS learning converges slowly 

• Newton’s method changes weights in the direction 
of the minimum E(w) and leads to fast convergence.  
• But it is not online and is computationally expensive 
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Stability of adaptation 

 When η is too small, 
learning converges slowly 

 When η is too large, learning 
doesn’t converge 
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Learning rate annealing 

• Basic idea: start with a large rate but gradually decrease it 
• Stochastic approximation 

 
 
 
 
c is a positive parameter 
 

n
cn =)(η
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Learning rate annealing (cont.) 

• Search-then-converge 
 
 
 
 
η0 and τ are positive parameters 
 
•When n is small compared to τ, learning rate is approximately constant 
•When n is large compared to τ, learning rule schedule roughly follows 
stochastic approximation 
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Rate annealing illustration 
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Nonlinear neurons 

• To extend the LMS algorithm to nonlinear neurons, consider 
differentiable activation function φ at iteration n 
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Nonlinear neurons (cont.) 

• By chain rule of differentiation 
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Nonlinear neurons (cont.) 

• Gradient descent gives 
 
 
 
 
• The above is called the delta (δ) rule 

• If we choose a logistic sigmoid for φ 
 
 

 
then 
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Role of activation function 

v 

φ 

v 

φ′ 

 The role of φ′: weight update is most sensitive when v is near zero 
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