CSE 5526: Introduction to Neural Networks

Perceptrons

1

CSE 5526: Perceptrons

Perceptrons

- Architecture: one-layer feedforward net
 - Without loss of generality, consider a single-neuron perceptron

Definition

$$y = \varphi(v)$$

$$v = \sum_{i=1}^{m} w_i x_i + b$$

$$\varphi(v) = \begin{cases} 1 & \text{if } v \ge 0 \\ -1 & \text{otherwise} \end{cases}$$

Hence a McCulloch-Pitts neuron, but with real-valued inputs

Pattern recognition

- With a bipolar output, the perceptron performs a 2class classification problem
 - E.g, apples vs. oranges
- How do we learn to perform classification?
- The perceptron is given pairs of input x_p and desired output d_p .
- How can we find w so $y_p = \varphi(x_p^T w) = d_p \ \forall p$?

But first: decision boundary

- Can we visualize the decision the perceptron would make in classifying every potential point?
- Yes, it is called the discriminant function

$$g(x) = x^T w = \sum_{i=0}^m w_i x_i$$

- What is the boundary between the two classes like? $g(x) = x^T w = 0$
- This is a linear function of *x*

Decision boundary example

Decision boundary (cont.)

- For an *m*-dimensional input space, the decision boundary is an (m 1)-dimensional hyperplane perpendicular to w. The hyperplane separates the input space into two halves, with one half having y = 1, and the other half having y = -1
 - When b = 0, the hyperplane goes through the origin

Linear separability

- For a set of input patterns x_p , if there exists at least one *w* that separates d = 1 patterns from d = -1patterns, then the classification problem is linearly separable
 - In other words, there exists a linear discriminant function that produces no classification error
 - Examples: AND, OR, XOR (see blackboard)
- A very important concept

Linear separability: a more general illustration

Perceptron definition again

$$y = \varphi(v)$$

$$v = \sum_{i=1}^{m} w_i x_i + b$$

$$\varphi(v) = \begin{cases} 1 & \text{if } v \ge 0 \\ -1 & \text{otherwise} \end{cases}$$

Hence a McCulloch-Pitts neuron, but with real-valued inputs

Perceptron learning rule

- Learn parameters w from examples (x_{p}, d_{p})
- In an online fashion, i.e., one point at a time
- Adjust weights as necessary, i.e. when incorrect
- Adjust weights to be more like d=1 points and more like negative d=-1 points

Biological analogy

- Strengthen an active synapse if the postsynaptic neuron fails to fire when it should have fired; weaken an active synapse if the neuron fires when it should not have fired
 - Formulated by Rosenblatt based on biological intuition

Quantitatively

$$w(n+1) = w(n) + \Delta w(n)$$

$$= w(n) + \eta [d(n) - y(n)] x(n)$$

- *n*: iteration number, iterating over points in turn
- η : step size or learning rate, = 1 WLOG
- Only updates w when y(n) is incorrect

CSE 5526: Perceptrons

- Each weight update moves w closer to d = 1 patterns, or away from d = -1 patterns.
- Final weight vector in example solves the classification problem
- Is that true in all cases?

Summary of perceptron learning algorithm

- Definition
 - *w*(*n*): (m+1)-by-1 weight vector (including bias) at step *n*
- Inputs
 - x(n): nth (m+1)-by-1 input vector with first element = 1
 - d(n): nth desired response
- Initialization: set w(0) = 0
- Repeat until no points are mis-classified
 - Compute response: $y(n) = sgn\{w(n)^T x(n)\}$
 - Update: w(n + 1) = w(n) + [d(n) y(n)]x(n)

Perceptron convergence theorem

• Theorem:

• Assume that there exists some unit vector w_0 and some α such that $d(n)w_0^T x(n) \ge \alpha$

- i.e. the data are linearly separable

- Assume also that there exists some *R* such that
 ||*x*(*n*)|| = √*x*(*n*)^T*x*(*n*) ≤ *R* ∀*n* - i.e. the data lie within a sphere of radius *R*
- Then the perceptron algorithm makes at most $\frac{R^2}{\alpha^2}$ errors
- Exposition based on Collins (2012)

Perceptron convergence proof outline

- Define w_k as the parameter vector when the algorithm makes its k^{th} error (note $w_1 = 0$)
- First show $k\alpha \leq ||w_{k+1}||$ by induction
- Second show $||w_{k+1}||^2 \le kR^2$ by induction
- Then it follows that $k \leq \frac{R^2}{\alpha^2}$
 - I.e., the perceptron makes a finite number of errors

First show $k\alpha \leq ||w_{k+1}||$ by induction

- Assume that the k^{th} error is made on example n
- Because of the perceptron update rule, $w_{k+1}^T w_0 = (w_k + d(n)x(n))^T w_0$ $= w_k^T w_0 + d(n)x(n)^T w_0$ $\ge w_k^T w_0 + \alpha$
- Because, by assumption, $d(n)x(n)^T w_0 \ge \alpha$
- Then, by induction on k, $w_{k+1}^T w_0 \ge k\alpha$
- In addition, $||w_{k+1}|| \cdot ||w_0|| \ge w_{k+1}^T w_0$ by Cauchy-Schwartz, with $||w_0|| = 1$
- Thus, $||w_{k+1}|| \ge w_{k+1}^T w_0 \ge k\alpha$

CSE 5526: Perceptrons

Second show $||w_{k+1}||^2 \le kR^2$ by induction

- Because of the perceptron update rule $\|w_{k+1}\|^2 = \|w_k + d(n)x(n)\|^2$ $\|w_{k+1}\|^2 = \|w_k\|^2 + d^2(n)\|x(n)\|^2$ $+2d(n)x(n)^Tw_k$
- By definition, $d^2(n) = 1$
- By assumption, $||x(n)||^2 \le R^2$
- Because the nth point was misclassified $2d(n)x(n)^T w_k \leq 0$
- Thus, $||w_{k+1}||^2 \le ||w_k||^2 + R^2$
- And, by induction on k, $||w_{k+1}||^2 \le kR^2$

Then it follows that $k \leq R^2/\alpha^2$

- We have shown $k\alpha \le ||w_{k+1}||$ and $||w_{k+1}||^2 \le kR^2$
- So, $k^2 \alpha^2 \le \|w_{k+1}\|^2 \le kR^2$
- Then it follows that $k \leq \frac{R^2}{\alpha^2}$
- Thus the perceptron learning algorithm makes a bounded number of mistakes, i.e., converges

Perceptron learning remarks

- If the data are not linearly separable
 - Algorithm will iterate forever
- Scaling w does not affect the perceptron's decision
 - So the learning rate, η, does not affect the perceptron's decision either, and can be set to 1
- The solution weight vector, *w*, is not unique

Generalization

- Performance of a learning machine on test patterns not used during training
- Perceptrons generalize by deriving a decision boundary in the input space. Selection of training patterns is thus important for generalization