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CSE 5526: Introduction to Neural Networks 

Deep Belief Networks 
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Deep circuits can represent logic expressions 
using exponentially fewer components 

• Consider the parity problem (project 1) 
• for 𝒙𝒙 ∈ 0,1 𝐷𝐷 

𝑓𝑓 𝒙𝒙 = �
1,  �𝑥𝑥𝑖𝑖 is even

𝑖𝑖
0,      otherwise

 

• The depth-2 circuit to compute 𝑓𝑓 𝒙𝒙  uses 𝑂𝑂 2𝐷𝐷  
AND, OR, and NOT elements 

• A depth-D circuit to compute 𝑓𝑓 𝒙𝒙  uses 𝑂𝑂 𝐷𝐷  

• In general, a depth-k circuit uses O 𝐷𝐷
𝑘𝑘−2
𝑘𝑘−12𝐷𝐷

1
𝑘𝑘−1  

• See (Hastad, 1987, Thm. 2.2) 
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Backpropagation through deep neural nets 
leads to the vanishing gradient problem 

• Recall, gradient of error WRT weights in layer ℓ 
𝜕𝜕𝜕𝜕 𝒘𝒘
𝜕𝜕𝑤𝑤𝑗𝑗𝑗𝑗ℓ

= −𝛿𝛿𝑗𝑗ℓ𝑦𝑦𝑖𝑖ℓ−1  where  𝛿𝛿𝑗𝑗ℓ = 𝜑𝜑′ 𝑣𝑣𝑗𝑗ℓ �𝛿𝛿𝑘𝑘ℓ+1𝑤𝑤𝑗𝑗𝑗𝑗ℓ

𝑘𝑘

 

• In matrix notation, define vector 𝜹𝜹ℓ and diagonal 
matrix Φ′ ℓ  with 𝜑𝜑′ 𝑣𝑣𝑗𝑗ℓ  on its diagonal, then  

𝜹𝜹ℓ = Φ′ ℓ 𝑊𝑊ℓ𝜹𝜹ℓ+1 
= Φ′ ℓ 𝑊𝑊ℓΦ′ ℓ+1 𝑊𝑊ℓ+1 ⋯𝜹𝜹𝐿𝐿 

≈ Φ′𝑊𝑊 𝐿𝐿−ℓ𝜹𝜹𝐿𝐿 
• Generally, Φ′𝑊𝑊 𝐿𝐿−ℓ either goes to ∞ or 0 
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Convolutional networks are deep networks  
that are feasible to train 

• Neural network that learns “receptive fields” 
• And applies them across different spatial positions 

• Weight matrices are very constrained 
• Train using standard backprop 
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LeNet-1 zipcode recognizer 

• Trained on 7300 digits and tested on 2000 new ones 
• 1% error on training set, 5% error on test set 
• If allowing no decision, 1% error on the test set 
• Difficult task (see examples) 

• Remark: constraining network connectivity is a way 
of incorporating prior knowledge about a problem  
• Backprop applies whether or not the network is 

constrained 
 

 
 
 

http://yann.lecun.com/exdb/lenet/
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LeNet-1 zipcode recognizer architecture 
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Another way to train deep neural nets  
is to use unsupervised pre-training 

• Build training up from the bottom 
• Train a shallow model to describe the data 
• Treat that as a fixed transformation 
• Train another shallow model on transformed data 
• Etc. 

• No long-distance gradients necessary 
• Initialize a deep neural network with these params 
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Restricted Boltzmann machines  
can be used as building blocks in this way 

• A restricted Boltzmann machine (RBM) is a 
Boltzmann machine with one visible layer and one 
hidden layer, and no connection within each layer 
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RBM conditions are easy to compute 

• The energy function is: 

𝐸𝐸 𝐯𝐯,𝐡𝐡 = −
1
2
��𝑤𝑤𝑗𝑗𝑗𝑗𝑣𝑣𝑗𝑗

𝑗𝑗𝑖𝑖

ℎ𝑖𝑖 = −
1
2
𝒗𝒗𝑇𝑇𝑊𝑊𝒉𝒉 

• So 𝑝𝑝 𝒗𝒗 𝒉𝒉 , 𝑝𝑝 𝒉𝒉 𝒗𝒗  are now easy to compute 
• No Gibbs sampling necessary 

𝑝𝑝 𝒉𝒉 𝒗𝒗 = exp
1
2
𝒗𝒗𝑇𝑇𝑊𝑊𝒉𝒉 � exp

1
2
𝒗𝒗𝑇𝑇𝑊𝑊𝒉𝒉

𝒉𝒉

−1

 

� exp
1
2
𝒗𝒗𝑇𝑇𝑊𝑊𝒉𝒉

𝒉𝒉

= �� exp
1
2
𝒗𝒗𝑇𝑇𝑊𝑊𝑖𝑖⋅ℎ𝑖𝑖

ℎ𝑖𝑖𝑖𝑖
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RBM training still needs Gibbs sampling 

• Setting 𝑇𝑇 = 1, we have 
𝜕𝜕𝜕𝜕 𝐰𝐰
𝜕𝜕𝑤𝑤𝑗𝑗𝑖𝑖

= 𝜌𝜌𝑗𝑗𝑗𝑗+ − 𝜌𝜌𝑗𝑗𝑗𝑗−                                           

= ℎ𝑖𝑖
0 𝑣𝑣𝑗𝑗 0 − ℎ𝑖𝑖

∞ 𝑣𝑣𝑗𝑗 ∞  

• The second correlation is computed using alternating 
Gibbs sampling until thermal equilibrium 
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Contrastive divergence  
is a quick way to train an RBM 

• Contrastive divergence training 
• Start at observed data, sample h, then v, then h 

△ 𝑤𝑤𝑗𝑗𝑖𝑖 = 𝜂𝜂 ℎ𝑖𝑖
0 𝑣𝑣𝑗𝑗 0 − ℎ𝑖𝑖

1 𝑣𝑣𝑗𝑗 1  

• First term is exact 
• Second term approximates a sample from the 

unclamped joint distribution 
• Assuming that 𝑝𝑝(𝒗𝒗,𝒉𝒉) is close to the data distribution 
• Then (𝒗𝒗 1 ,𝒉𝒉 1 ) is a reasonable sample from 𝑝𝑝 𝒗𝒗,𝒉𝒉  
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Logistic belief nets are directed 
Boltzmann machines 

• Each unit is 
bipolar (binary) 
and stochastic 

• Sampling from 
the belief net is 
easy 

• Computing 
probabilities is 
still hard 
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Sampling from a logistic belief net 

• Given the bipolar states of the units in layer 𝑘𝑘, we 
generate the state of each unit in layer 𝑘𝑘 − 1: 

𝑃𝑃 ℎ𝑗𝑗
𝑘𝑘−1 = 1 = 𝜑𝜑 �𝑤𝑤𝑗𝑗𝑗𝑗(𝑘𝑘)ℎ𝑖𝑖

(𝑘𝑘)

𝑖𝑖

 

where superscript indicates layer number and 

𝜑𝜑 𝑥𝑥 =
1

1 + exp (−𝑥𝑥)
 

is a logistic activation function 
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Learning rule 

• The bottom layer 𝐡𝐡(0) is equal to the visible layer 𝐯𝐯 
• Learning in a belief net maximizes the likelihood of 

generating the input patterns applied to 𝐯𝐯, we have 
△ 𝑤𝑤𝑗𝑗𝑖𝑖 = ℎ𝑖𝑖

𝑘𝑘 ℎ𝑗𝑗
𝑘𝑘−1 − 𝑃𝑃 ℎ𝑗𝑗

𝑘𝑘−1 = 1  

• The difference term in the above equation includes 
an evaluation of the posterior probability given the 
training data 
• Computing posteriors is, unfortunately, very difficult 
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A special belief net 

• However, for a special kind of belief net, computing 
posteriors is easy 

• Consider a logistic belief net with an infinite 
number of layers and tied weights 
• That is, a deep belief net (DBN) 
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Sampling from an infinite belief net 
produces samples from the posterior 
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Learning in this infinite belief net is now easy 

• Because of the tied weights, all but two terms cancel 
each other out 

𝜕𝜕𝜕𝜕 𝐰𝐰
𝜕𝜕𝑤𝑤𝑗𝑗𝑖𝑖

= ℎ𝑖𝑖
0 𝑣𝑣𝑗𝑗 0 − 𝑣𝑣𝑗𝑗 1

+ 𝑣𝑣𝑗𝑗 1 ℎ𝑖𝑖
0 − ℎ𝑖𝑖

1 + ℎ𝑖𝑖
1 𝑣𝑣𝑗𝑗 1 − 𝑣𝑣𝑗𝑗 2

+ ⋯ 
= ℎ𝑖𝑖

0 𝑣𝑣𝑗𝑗 0 − ℎ𝑖𝑖
∞ 𝑣𝑣𝑗𝑗 ∞  
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Thus learning in this infinite belief net 
is equivalent to learning in an RBM 

• This rule is exactly the same as the one for the RBM 
• Hence the equivalence between learning an infinite belief 

net and an RBM 
• Infinite belief nets are also known as deep belief 

nets (DBNs) 
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Training a general deep net layer-by-layer 

1. First learn 𝑊𝑊 with all weights tied 
2. Freeze (fix) 𝑊𝑊 as 𝑊𝑊0, which represents the 

learned weights for the first hidden layer 
3. Learn the weights for the second hidden layer by 

treating responses of the first hidden layer to the 
training data as “input data” 

4. Freeze the weights for the second hidden layer 
5. Repeat steps 3-4 as many times as the prescribed 

number of hidden layers 
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Thus an infinite belief network can be 
implemented with finite computation 

𝐻𝐻0 

𝑉𝑉0 
𝑊𝑊 𝑊𝑊𝑇𝑇 
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Thus an infinite belief network can be 
implemented with finite computation 

𝑉𝑉1 

𝐻𝐻0 

𝑉𝑉0 
𝑊𝑊0 

𝑊𝑊 𝑊𝑊𝑇𝑇 
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Thus an infinite belief network can be 
implemented with finite computation 

𝐻𝐻1 

𝑉𝑉1 

𝐻𝐻0 

𝑉𝑉0 
𝑊𝑊0 

𝑊𝑊1 

𝑊𝑊 𝑊𝑊𝑇𝑇 
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Thus an infinite belief network can be 
implemented with finite computation 

𝑉𝑉2 

𝐻𝐻1 

𝑉𝑉1 

𝐻𝐻0 

𝑉𝑉0 
𝑊𝑊0 

𝑊𝑊1 

𝑊𝑊2 

𝑊𝑊 𝑊𝑊𝑇𝑇 
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Thus an infinite belief network can be 
implemented with finite computation 

𝐻𝐻2 

𝑉𝑉2 

𝐻𝐻1 

𝑉𝑉1 

𝐻𝐻0 

𝑉𝑉0 
𝑊𝑊0 

𝑊𝑊1 

𝑊𝑊2 

𝑊𝑊3 

𝑊𝑊   𝑊𝑊𝑇𝑇   
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Remarks (Hinton, Osindero, Yeh, 2006) 

• As the number of layers increases, the maximum 
likelihood approximation of the training data 
improves 

• For discriminative training (e.g. for classification) 
we add an output layer on top of the learned 
generative model, and train the entire net by a 
discriminative algorithm 

• Although much faster than Boltzmann machines 
(e.g. no simulated annealing), pretraining is still 
quite slow, and involves a lot of design as for MLP 
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DBNs have been successfully applied  
to an increasing number of tasks 

• Ex: MNIST handwritten digit recognition 
• A DNN with two hidden layers achieves 1.25% 

error rate, vs. 1.4% for SVM and 1.5% for MLP 
• Great example animations 

• http://www.cs.toronto.edu/~hinton/digits.html  

http://www.cs.toronto.edu/%7Ehinton/digits.html
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Samples from the learned generative model 
with one label clamped on 
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Samples with one label clamped on  
starting at a randomly initialized image 
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