
1 CSE 5526: DBNs

CSE 5526: Introduction to Neural Networks

Deep Belief Networks

2 CSE 5526: DBNs

Deep circuits can represent logic expressions
using exponentially fewer components

• Consider the parity problem (project 1)
• for 𝒙𝒙 ∈ 0,1 𝐷𝐷

𝑓𝑓 𝒙𝒙 = �
1, �𝑥𝑥𝑖𝑖 is even

𝑖𝑖
0, otherwise

• The depth-2 circuit to compute 𝑓𝑓 𝒙𝒙 uses 𝑂𝑂 2𝐷𝐷
AND, OR, and NOT elements

• A depth-D circuit to compute 𝑓𝑓 𝒙𝒙 uses 𝑂𝑂 𝐷𝐷

• In general, a depth-k circuit uses O 𝐷𝐷
𝑘𝑘−2
𝑘𝑘−12𝐷𝐷

1
𝑘𝑘−1

• See (Hastad, 1987, Thm. 2.2)

3 CSE 5526: DBNs

Backpropagation through deep neural nets
leads to the vanishing gradient problem

• Recall, gradient of error WRT weights in layer ℓ
𝜕𝜕𝜕𝜕 𝒘𝒘
𝜕𝜕𝑤𝑤𝑗𝑗𝑗𝑗ℓ

= −𝛿𝛿𝑗𝑗ℓ𝑦𝑦𝑖𝑖ℓ−1 where 𝛿𝛿𝑗𝑗ℓ = 𝜑𝜑′ 𝑣𝑣𝑗𝑗ℓ �𝛿𝛿𝑘𝑘ℓ+1𝑤𝑤𝑗𝑗𝑗𝑗ℓ

𝑘𝑘

• In matrix notation, define vector 𝜹𝜹ℓ and diagonal
matrix Φ′ ℓ with 𝜑𝜑′ 𝑣𝑣𝑗𝑗ℓ on its diagonal, then

𝜹𝜹ℓ = Φ′ ℓ 𝑊𝑊ℓ𝜹𝜹ℓ+1
= Φ′ ℓ 𝑊𝑊ℓΦ′ ℓ+1 𝑊𝑊ℓ+1 ⋯𝜹𝜹𝐿𝐿

≈ Φ′𝑊𝑊 𝐿𝐿−ℓ𝜹𝜹𝐿𝐿
• Generally, Φ′𝑊𝑊 𝐿𝐿−ℓ either goes to ∞ or 0

4 CSE 5526: DBNs

Convolutional networks are deep networks
that are feasible to train

• Neural network that learns “receptive fields”
• And applies them across different spatial positions

• Weight matrices are very constrained
• Train using standard backprop

5 CSE 5526: DBNs

LeNet-1 zipcode recognizer

• Trained on 7300 digits and tested on 2000 new ones
• 1% error on training set, 5% error on test set
• If allowing no decision, 1% error on the test set
• Difficult task (see examples)

• Remark: constraining network connectivity is a way
of incorporating prior knowledge about a problem
• Backprop applies whether or not the network is

constrained

http://yann.lecun.com/exdb/lenet/

6 CSE 5526: DBNs

LeNet-1 zipcode recognizer architecture

7 CSE 5526: DBNs

Another way to train deep neural nets
is to use unsupervised pre-training

• Build training up from the bottom
• Train a shallow model to describe the data
• Treat that as a fixed transformation
• Train another shallow model on transformed data
• Etc.

• No long-distance gradients necessary
• Initialize a deep neural network with these params

8 CSE 5526: DBNs

Restricted Boltzmann machines
can be used as building blocks in this way

• A restricted Boltzmann machine (RBM) is a
Boltzmann machine with one visible layer and one
hidden layer, and no connection within each layer

9 CSE 5526: DBNs

RBM conditions are easy to compute

• The energy function is:

𝐸𝐸 𝐯𝐯,𝐡𝐡 = −
1
2
��𝑤𝑤𝑗𝑗𝑗𝑗𝑣𝑣𝑗𝑗

𝑗𝑗𝑖𝑖

ℎ𝑖𝑖 = −
1
2
𝒗𝒗𝑇𝑇𝑊𝑊𝒉𝒉

• So 𝑝𝑝 𝒗𝒗 𝒉𝒉 , 𝑝𝑝 𝒉𝒉 𝒗𝒗 are now easy to compute
• No Gibbs sampling necessary

𝑝𝑝 𝒉𝒉 𝒗𝒗 = exp
1
2
𝒗𝒗𝑇𝑇𝑊𝑊𝒉𝒉 � exp

1
2
𝒗𝒗𝑇𝑇𝑊𝑊𝒉𝒉

𝒉𝒉

−1

� exp
1
2
𝒗𝒗𝑇𝑇𝑊𝑊𝒉𝒉

𝒉𝒉

= �� exp
1
2
𝒗𝒗𝑇𝑇𝑊𝑊𝑖𝑖⋅ℎ𝑖𝑖

ℎ𝑖𝑖𝑖𝑖

10 CSE 5526: DBNs

RBM training still needs Gibbs sampling

• Setting 𝑇𝑇 = 1, we have
𝜕𝜕𝜕𝜕 𝐰𝐰
𝜕𝜕𝑤𝑤𝑗𝑗𝑖𝑖

= 𝜌𝜌𝑗𝑗𝑗𝑗+ − 𝜌𝜌𝑗𝑗𝑗𝑗−

= ℎ𝑖𝑖
0 𝑣𝑣𝑗𝑗 0 − ℎ𝑖𝑖

∞ 𝑣𝑣𝑗𝑗 ∞

• The second correlation is computed using alternating
Gibbs sampling until thermal equilibrium

11 CSE 5526: DBNs

Contrastive divergence
is a quick way to train an RBM

• Contrastive divergence training
• Start at observed data, sample h, then v, then h

△ 𝑤𝑤𝑗𝑗𝑖𝑖 = 𝜂𝜂 ℎ𝑖𝑖
0 𝑣𝑣𝑗𝑗 0 − ℎ𝑖𝑖

1 𝑣𝑣𝑗𝑗 1

• First term is exact
• Second term approximates a sample from the

unclamped joint distribution
• Assuming that 𝑝𝑝(𝒗𝒗,𝒉𝒉) is close to the data distribution
• Then (𝒗𝒗 1 ,𝒉𝒉 1) is a reasonable sample from 𝑝𝑝 𝒗𝒗,𝒉𝒉

12 CSE 5526: DBNs

Logistic belief nets are directed
Boltzmann machines

• Each unit is
bipolar (binary)
and stochastic

• Sampling from
the belief net is
easy

• Computing
probabilities is
still hard

13 CSE 5526: DBNs

Sampling from a logistic belief net

• Given the bipolar states of the units in layer 𝑘𝑘, we
generate the state of each unit in layer 𝑘𝑘 − 1:

𝑃𝑃 ℎ𝑗𝑗
𝑘𝑘−1 = 1 = 𝜑𝜑 �𝑤𝑤𝑗𝑗𝑗𝑗(𝑘𝑘)ℎ𝑖𝑖

(𝑘𝑘)

𝑖𝑖

where superscript indicates layer number and

𝜑𝜑 𝑥𝑥 =
1

1 + exp (−𝑥𝑥)

is a logistic activation function

14 CSE 5526: DBNs

Learning rule

• The bottom layer 𝐡𝐡(0) is equal to the visible layer 𝐯𝐯
• Learning in a belief net maximizes the likelihood of

generating the input patterns applied to 𝐯𝐯, we have
△ 𝑤𝑤𝑗𝑗𝑖𝑖 = ℎ𝑖𝑖

𝑘𝑘 ℎ𝑗𝑗
𝑘𝑘−1 − 𝑃𝑃 ℎ𝑗𝑗

𝑘𝑘−1 = 1

• The difference term in the above equation includes
an evaluation of the posterior probability given the
training data
• Computing posteriors is, unfortunately, very difficult

15 CSE 5526: DBNs

A special belief net

• However, for a special kind of belief net, computing
posteriors is easy

• Consider a logistic belief net with an infinite
number of layers and tied weights
• That is, a deep belief net (DBN)

16 CSE 5526: DBNs

Sampling from an infinite belief net
produces samples from the posterior

17 CSE 5526: DBNs

Learning in this infinite belief net is now easy

• Because of the tied weights, all but two terms cancel
each other out

𝜕𝜕𝜕𝜕 𝐰𝐰
𝜕𝜕𝑤𝑤𝑗𝑗𝑖𝑖

= ℎ𝑖𝑖
0 𝑣𝑣𝑗𝑗 0 − 𝑣𝑣𝑗𝑗 1

+ 𝑣𝑣𝑗𝑗 1 ℎ𝑖𝑖
0 − ℎ𝑖𝑖

1 + ℎ𝑖𝑖
1 𝑣𝑣𝑗𝑗 1 − 𝑣𝑣𝑗𝑗 2

+ ⋯
= ℎ𝑖𝑖

0 𝑣𝑣𝑗𝑗 0 − ℎ𝑖𝑖
∞ 𝑣𝑣𝑗𝑗 ∞

18 CSE 5526: DBNs

Thus learning in this infinite belief net
is equivalent to learning in an RBM

• This rule is exactly the same as the one for the RBM
• Hence the equivalence between learning an infinite belief

net and an RBM
• Infinite belief nets are also known as deep belief

nets (DBNs)

19 CSE 5526: DBNs

Training a general deep net layer-by-layer

1. First learn 𝑊𝑊 with all weights tied
2. Freeze (fix) 𝑊𝑊 as 𝑊𝑊0, which represents the

learned weights for the first hidden layer
3. Learn the weights for the second hidden layer by

treating responses of the first hidden layer to the
training data as “input data”

4. Freeze the weights for the second hidden layer
5. Repeat steps 3-4 as many times as the prescribed

number of hidden layers

20 CSE 5526: DBNs

Thus an infinite belief network can be
implemented with finite computation

𝐻𝐻0

𝑉𝑉0
𝑊𝑊 𝑊𝑊𝑇𝑇

21 CSE 5526: DBNs

Thus an infinite belief network can be
implemented with finite computation

𝑉𝑉1

𝐻𝐻0

𝑉𝑉0
𝑊𝑊0

𝑊𝑊 𝑊𝑊𝑇𝑇

22 CSE 5526: DBNs

Thus an infinite belief network can be
implemented with finite computation

𝐻𝐻1

𝑉𝑉1

𝐻𝐻0

𝑉𝑉0
𝑊𝑊0

𝑊𝑊1

𝑊𝑊 𝑊𝑊𝑇𝑇

23 CSE 5526: DBNs

Thus an infinite belief network can be
implemented with finite computation

𝑉𝑉2

𝐻𝐻1

𝑉𝑉1

𝐻𝐻0

𝑉𝑉0
𝑊𝑊0

𝑊𝑊1

𝑊𝑊2

𝑊𝑊 𝑊𝑊𝑇𝑇

24 CSE 5526: DBNs

Thus an infinite belief network can be
implemented with finite computation

𝐻𝐻2

𝑉𝑉2

𝐻𝐻1

𝑉𝑉1

𝐻𝐻0

𝑉𝑉0
𝑊𝑊0

𝑊𝑊1

𝑊𝑊2

𝑊𝑊3

𝑊𝑊 𝑊𝑊𝑇𝑇

25 CSE 5526: DBNs

Remarks (Hinton, Osindero, Yeh, 2006)

• As the number of layers increases, the maximum
likelihood approximation of the training data
improves

• For discriminative training (e.g. for classification)
we add an output layer on top of the learned
generative model, and train the entire net by a
discriminative algorithm

• Although much faster than Boltzmann machines
(e.g. no simulated annealing), pretraining is still
quite slow, and involves a lot of design as for MLP

26 CSE 5526: DBNs

DBNs have been successfully applied
to an increasing number of tasks

• Ex: MNIST handwritten digit recognition
• A DNN with two hidden layers achieves 1.25%

error rate, vs. 1.4% for SVM and 1.5% for MLP
• Great example animations

• http://www.cs.toronto.edu/~hinton/digits.html

http://www.cs.toronto.edu/%7Ehinton/digits.html

27 CSE 5526: DBNs

Samples from the learned generative model
with one label clamped on

28 CSE 5526: DBNs

Samples with one label clamped on
starting at a randomly initialized image

	CSE 5526: Introduction to Neural Networks
	Deep circuits can represent logic expressions�using exponentially fewer components
	Backpropagation through deep neural nets�leads to the vanishing gradient problem
	Convolutional networks are deep networks �that are feasible to train
	LeNet-1 zipcode recognizer
	LeNet-1 zipcode recognizer architecture
	Another way to train deep neural nets �is to use unsupervised pre-training
	Restricted Boltzmann machines �can be used as building blocks in this way
	RBM conditions are easy to compute
	RBM training still needs Gibbs sampling
	Contrastive divergence �is a quick way to train an RBM
	Logistic belief nets are directed�Boltzmann machines
	Sampling from a logistic belief net
	Learning rule
	A special belief net
	Sampling from an infinite belief net�produces samples from the posterior
	Learning in this infinite belief net is now easy
	Thus learning in this infinite belief net�is equivalent to learning in an RBM
	Training a general deep net layer-by-layer
	Thus an infinite belief network can be implemented with finite computation
	Thus an infinite belief network can be implemented with finite computation
	Thus an infinite belief network can be implemented with finite computation
	Thus an infinite belief network can be implemented with finite computation
	Thus an infinite belief network can be implemented with finite computation
	Remarks (Hinton, Osindero, Yeh, 2006)
	DBNs have been successfully applied �to an increasing number of tasks
	Samples from the learned generative model�with one label clamped on
	Samples with one label clamped on �starting at a randomly initialized image

