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‘What is optimization?

= Finding (one or more) minimizer of a function
subject to constraints

argmxinfo(x)
s.t.fi(x) < 0,1 =A1,...,k}

= Most of the machine learning problems are, In
the end, optimization problems.




‘ Examples

= (Soft) Linear SVM  argmin ) [[w|>+C) &
1=1 1=1

s.t. 1 —yxiw < &
§& >0

= Maximum Likelihood argmguleog po (i)
1=1

k
= K-means arg min Z Z s — p5]?
) 9 : C




Optimization 1s difficult in general

= Minimize f(x)
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‘ Convex sets

m Def: A set C CR"is convex if for z,y € C and any a € [0, 1],
ar+ (1 —a)y € C




‘ Examples of convex set

» All of R" (obvious)

» Non-negative orthant, R”: let 2 = 0, y = 0, clearly
ar+ (1 —a)y = 0.
» Affine subspaces: Ax = b, Ay = b, then
Alaz+ (1 —a)y) =adx+ (1 —a)Ay =ab+ (1 —a)b =b.

» Arbitrary intersections of convex sets: let C'; be convex for i € 7,
C' =), C;, then

reCyeC = ar+(l—-—ayeC;vViel

soar + (1 —a)y e C.



‘ Convex functions

n Def:
A function f:R"™ — R is convex if for z,y € domfand any a € [0, 1],

flaz + (1 —a)y) < af(z)+ (1 —a)f(y)

f(y)
af(x)+(1-a)f(y) N
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‘ Convexity condition 1

= Theorem

Suppose f : R™ — R s differentiable. Then f is convex if and only if for
all x,y € dom f

fy) = f@) + Vi) (y —2)




‘ Subgradient

Definition
The subgradient set, or subdifferential set, df(x) of f at = is

Of(@)={g: f(y) = f(x) + ¢T(y — z) forall y}.

Theorem

f:R"™ — R is convex if and
only if it has non-empty
subdifferential set everywhere.
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‘ Convexity condition 2

Theorem
Suppose f : R™ — R is twice differentiable. Then f is convex if and only if
for all x € dom f,

V2f(z) = 0.
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‘ Examples of convex functions

» Linear/affine functions:

flz)=bla+e
» Quadratic functions:

1
f(z) = —qTAz + bl 4 ¢

for A = 0. For regression:

5 | Xw =yl = G X Xw =y Xw+ 54"
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More examples

» Norms (like /1 or f3 for regularization):

oz + (1 =a)y|| < [lazl|+ |1 = a)yl| = allzf + (1 — o) |y] -

» Composition with an affine function f(Ax + b):

flAlax + (1 —a)y) +0) = fla(Ax+b) + (1 —a)(Ay + b))
<af(Ar+b)+ (1 —a)f(Ay + D)

» Log-sum-exp (via V2f(x) PSD):

f(a) = log (Z exp(ﬁ))

i=1
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‘ Examples in machine learning

» SVM loss:

flw)=[1- yz’é’*‘-’-’?“}]Jr

» Binary logistic loss:

f(“-") = ng (1 -+ EX])(—yi:.!:g"-u;)) log(1 + e”)




‘ Convex optimization

= Def:

An optimization problem is convex if its objective is a convex function, the
inequality constraints f; are convex, and the equality constraints /; are
affine

mmlmlze fo(x) (Convex function)

fi(x) <0 (Convex sets)
hj(a:') 0 (Affine)
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| Convex problems are nice....

Theorem
If = is a local minimizer of a convex optimization problem, it is a global
minimizer.
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For smooth functions

Theorem
Vf(z) =0 if and only if = is a global minimizer of f(x).

Proof.
» Vf(x)=0. We have
fy) = f(x) + V@) (y —2) = f(x).

» V f(x) # 0. There is a direction of descent.
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‘ Gradient descent

= Consider convex and unconstrained
optimization.

= Solve min, f(x)
= One of the simplest approach:
Fort=1, ..., T
" Xyp — X — N V(X
Until convergence
n; Is called step-size or learning rate.
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‘ Single step in gradient descent

f(x)

flxe) - nV fz)" (@ - 2)
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Full oradient descent

f(x) =log(exp(xy + 329 — .1) + exp(xy — 3z9 — .1) +exp(—z; — .1))
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How to choose step size ?

» |dea 1: exact line search

1 = argmin f (x — nV f(x))

n

Too expensive to be practical.

» |dea 2: backtracking (Armijo) line search. Let v < (0, %), Fe(0,1).

Multiply = 57 until
f@=nVf(x) < fx)—an| V()

Works well in practice.
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‘ Newton’s method

Idea: use a second-order approximation to function.
flz+ Azx) ~ f(z) + Vf(z) Az + %.&:ﬁ:vgf(:r—) Ax
Choose Ax to minimize above:
Az == [V?f(2)] 7 V()
This is descent direction:

Vi) Azr ==V i) [V2f(2)] " Vf(z) < 0.
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‘ Single step in Newton’s method

f is 2d_order approximation, f is true function.
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‘ Convergence rate

» Strongly convex case: V2f(x) = ml, then “Linear convergence.” For
some v € (0.1), f(x;) — f(z*) <At v < 1.

flay) — f(z*) <A" or t> %log% = f(x¢) — f(2™) < e.

> Smooth case: ||V f(x) — Vf(y)[| < C o —y].

flze) = f(@7) = 3

» Newton's method often is faster, especially when f has “long valleys”
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‘ Newton’s method

= [nverting a Hessian is very expensive: O(d?)

= Approximate inverse Hessian
BFGS, Limited-memory BFGS

= Or use Conjugate Gradient Descent

= For unconstrained problems, you can use these
off-the-shelf optimization methods

= For unconstrained non-convex problems, these
methods will find local optima
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‘ Optimization for machine learning

= Goal of machine learning
Minimize expected loss L(h) = E [loss(h(x),y)]
given samples (xz;,y;) i = 1,2...m
But we don’t know P(X,y), nor can we estimate it well
= Empirical risk minimization
Substitute sample mean for expectation
Minimize empirical loss: L(h) = 1/n }; loss(h(X)),y;)
A.K.A. Sample Average Approximation
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‘ Batch gradient descent

= Let's put our knowledge into use
= Minimize empirical loss, assuming it's convex
and unconstrained

Gradient descent on the empirical loss:
At each step,

1 <= OL(w, z;,y;)
ht1) 0 _ o 1 \ Tis Yi
w — w il (n Z )

ow
i=1

Note: at each step, gradient is the average of the
gradient for all samples (i =1,...,n)

Very slow when n is very large
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Stochastic oradient descent

= Alternative: compute gradient from just one (or a
few samples)

= Known as stochastic gradient descent:
At each step,

oL W, Ly Yi
2wt (k) n: ( o Yi)

(choose one sample | and compute gradient for that
sample only)
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‘Confd

= The gradient of one random sample is not the
gradient of the objective function

= Q1: Would this work at all?
= Q2: How good is it?
= Al: SGD converges to not only the empirical

loss minimum, but also to the expected loss
minimum!

= A2: Convergence (to expected loss) is slow
f(w,) — E[f(w*)] £ O(1/t) or O(1/~lt)
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‘ Practically speaking....

If the training set is small:

batch learning using quasi-Newton or conjugate
gradient descent

If the training set is large:
stochastic gradient descent

Somewhere In between
mini-batch

Convergence is very sensitive to learning rate

Basically, it needs to be determined by trial-and-error
(model selection or cross-validation)
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‘ Constrained optimization

= Unconstrained optimization
o Gradient descent
o Newton’s method
o Batch vs online learning
o Stochastic Gradient Descent

= Constrained optimization
o Lagrange duality

o SVM in primal and dual forms
o Constrained methods
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‘ Lagrangian function

Start with optimization problem:
minizvmize fo(x)

st. fi(x) <0, i={1,...,k}

hj(z) =0, j=1{1,...,1}

Form Lagrangian using Lagrange multipliers A\; > 0, v; € R

k l
L(z,\v) = fo(z)+ ) Nifi() + ) _vihi(z)
i—1 j=1
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‘ Con’t

= Original/primal problem minimize fo(z)
hi(z) =0, j={1,...,1l}

IS equivalent to min-max optimization

S.

minimize | sup L(z, A, )
r A=0,v
O Why?

Consider a two-player game

If player 1 chooses x that violates a constraint f,(x)>0, player 2
choose A\; — « so that L(x,A,v) = ... + A[f{(X) + ... —> =

Therefore, player 1 is forced to satisfy constraints
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‘ Dual function and dual problem

= Dual function:

l
g\ v) = igfﬁ(w, A\ V) = mf { ) + Z Nifi(x) + Z thj(;v)}
j=1

= Dual problem (cf: Primal problem)
maximize {illf ﬁ(.'i!_'. A, IJ)} : minimize lsup L (z A, H)]
AZ0Ov - - A0,

= Q: How are primal and dual solutions related?
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‘ Weak duality

= Dual function lower-bounds the primal optimal value!

Lemma (Weak Duality)
[f A\ = 0, then
g\, v) < fo(x™).

Proof.
We have

g\ v) = ilrgf L(x,\v) < L(x",\,v)

I l
= fo(z*) + Y Aifi(x*) + > vihi(a*) < fo(z®).
i=1 j=1
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‘ Strong duality

= For convex problems, primal and dual solutions are

equivalent!

sup g(A,v) = fo(z7)
A=0w

= Equivalently, max min L(X,A,v) = min max L(x,A,v)

= What does the theorem mean in practice?

You had a constrained minimization problem, which may be hard to
solve

Dual problem may be easier to solve (simpler constrains)

When you solve the dual problem, it also gives the solution for the
primal problem!
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SVM Recap

)
N
N

valid separating
hyperplane

hyperplane
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‘ SVM in primal form

= Primal SVM
minimaize %HUHE

subject to y;(w-x;+wy) > 1fori=1,....m

o for linearly separable cases.

o Itis alinearly constrained QP, and therefore a convex
problem

41



‘ SVM 1n dual form

The Lagrangean function associated to the primal form of the
given QP is

Lp(w, wy, a) = —||u1 || — Zaz yi(w - x; +wp) — 1)
=1
with a; > 0,2 =1....,m. Finding the minimum of Lp implies
oL

T
P Z :
= =2 Y =0
Jwo i=1

)L p -
TP w— Z Yiir; = 0= w =) y0,1;
C)U' i—1 i=1
h dLp OLp JdLp
where — (——, ...,
Jw Juwy, Jdwg

By substituting these constraints into Lp we get its dual form

lm m
Lp(a) =)« ——2;21003J1J311 z;
i=1j]

1!.:




Constrained optimization methods

= Log barrier method
= Projected (sub)gradient
= Interior point method

= Specialized methods
SVM: Sequential Minimal Optimization
Structured-output SVM: cutting-plane method

= Other optimization not covered in this lecture:
Bayesian models: EM, variational methods
Discrete optimization
Graph optimization
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