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 Finding (one or more) minimizer of a function 

subject to constraints 

 

 

 

 

 Most of the machine learning problems are, in 

the end, optimization problems. 

What is optimization? 
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Examples 

 (Soft) Linear SVM 

 

 

 

 Maximum Likelihood 

 

 

 K-means 
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Optimization is difficult in general 

 Minimize f(x) 
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Convex sets 

 Def: 
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Examples of convex set 
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Convex functions 

 Def: 
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Convexity condition 1 

 Theorem 
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Subgradient 
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Convexity condition 2 
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Examples of convex functions 
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More examples 
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Examples in machine learning 
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Convex optimization 

 Def: 
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Convex problems are nice…. 
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For smooth functions 
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 Consider convex and unconstrained 

optimization. 

 Solve   minx f(x) 

 One of the simplest approach: 

 For t = 1, … , T 

 xt+1  ←  xt  –  ηt ∇ f(xt) 

 Until convergence 

 ηt is called step-size or learning rate. 

 

 

 

Gradient descent 
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Single step in gradient descent 
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Full gradient descent 
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How to choose step size ? 
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Newton’s method 
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Single step in Newton’s method 
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Convergence rate 

   
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Newton’s method 

 Inverting a Hessian is very expensive: O(d3) 

 Approximate inverse Hessian 

 BFGS, Limited-memory BFGS 

 Or use Conjugate Gradient Descent 

 For unconstrained problems, you can use these 

off-the-shelf optimization methods 

 For unconstrained non-convex problems, these 

methods will find local optima 
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Optimization for machine learning 
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 Goal of machine learning 

 Minimize expected loss 

  given samples 

 But we don’t know P(x,y), nor can we estimate it well  

 Empirical risk minimization 

 Substitute sample mean for expectation 

 Minimize empirical loss: L(h) = 1/n ∑i loss(h(xi),yi) 

 A.K.A. Sample Average Approximation 



Batch gradient descent 

 Let’s put our knowledge into use 

 Minimize empirical loss, assuming it’s convex 

and unconstrained 

 Gradient descent on the empirical loss: 

 At each step,  

 

 

 Note: at each step, gradient is the average of the 

gradient for all samples (i =1,...,n) 

 Very slow when n is very large 
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Stochastic gradient descent 

 Alternative: compute gradient from just one (or a 

few samples)  

 Known as stochastic gradient descent: 

 At each step,  

 

 

(choose one sample i and compute gradient for that 

sample only) 
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Cont’d 

 The gradient of one random sample is not the 

gradient of the objective function  

 Q1: Would this work at all? 

 Q2: How good is it? 

 A1: SGD converges to not only the empirical 

loss minimum, but also to the expected loss 

minimum! 

 A2: Convergence (to expected loss) is slow 

 f(wt) – E[f(w*)] ≤ O(1/t) or O(1/√t) 
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Practically speaking.... 

 If the training set is small:  

 batch learning using quasi-Newton or conjugate 

gradient descent 

 If the training set is large: 

 stochastic gradient descent 

 Somewhere in between 

 mini-batch 

 Convergence is very sensitive to learning rate  

 Basically, it needs to be determined by trial-and-error 

(model selection or cross-validation) 
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Lagrangian function 
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 Original/primal problem 

 

 

     is equivalent to min-max optimization 

 

 

 Why? 

 Consider a two-player game 

 If player 1 chooses x that violates a constraint f1(x)>0, player 2 

choose λ1 → ∞ so that L(x,λ,ν) = ... + λ1f1(x) + ...  → ∞  

 Therefore, player 1 is forced to satisfy constraints 

 

Con’t 
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Dual function and dual problem 

 Dual function: 

 

 

 

 Dual problem                             (cf: Primal problem) 

 

 

    

 Q: How are primal and dual solutions related? 
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Weak duality 

 Dual function lower-bounds the primal optimal value! 
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 For convex problems, primal and dual solutions are 

equivalent! 

 

 Equivalently,   max min L(x,λ,ν) = min max L(x,λ,ν) 
 

 What does the theorem mean in practice? 
 You had a constrained minimization problem, which may be hard to 

solve 

 Dual problem may be easier to solve (simpler constrains) 

 When you solve the dual problem, it also gives the solution for the 

primal problem!  

Strong duality 
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SVM Recap 
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SVM in primal form 

  Primal SVM  

 

 

 for linearly separable cases. 

 It is a linearly constrained QP, and therefore a convex 

problem 
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SVM in dual form 
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Constrained optimization methods 

 Log barrier method 

 Projected (sub)gradient 

 Interior point method 

 Specialized methods 

 SVM: Sequential Minimal Optimization 

 Structured-output SVM: cutting-plane method 

 

 Other optimization not covered in this lecture: 

 Bayesian models: EM, variational methods 

 Discrete optimization 

 Graph optimization 
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