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 Finding (one or more) minimizer of a function 

subject to constraints 

 

 

 

 

 Most of the machine learning problems are, in 

the end, optimization problems. 

What is optimization? 
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Examples 

 (Soft) Linear SVM 

 

 

 

 Maximum Likelihood 

 

 

 K-means 
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Optimization is difficult in general 

 Minimize f(x) 
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Convex sets 

 Def: 
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Examples of convex set 
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Convex functions 

 Def: 
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Convexity condition 1 

 Theorem 
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Subgradient 
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Convexity condition 2 
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Examples of convex functions 
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More examples 
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Examples in machine learning 
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Convex optimization 

 Def: 
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Convex problems are nice…. 
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For smooth functions 

 

19 



Contents (cont’d) 

 Unconstrained optimization 

 Gradient descent 

 Newton’s method 

 Batch vs online learning 

 Stochastic Gradient Descent 

 Constrained optimization 

 Lagrange duality 

 SVM in primal and dual forms 

 Constrained methods 

20 



 Consider convex and unconstrained 

optimization. 

 Solve   minx f(x) 

 One of the simplest approach: 

 For t = 1, … , T 

 xt+1  ←  xt  –  ηt ∇ f(xt) 

 Until convergence 

 ηt is called step-size or learning rate. 

 

 

 

Gradient descent 
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Single step in gradient descent 
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Full gradient descent 
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How to choose step size ? 
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Newton’s method 
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Single step in Newton’s method 

 

26 



Convergence rate 
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Newton’s method 

 Inverting a Hessian is very expensive: O(d3) 

 Approximate inverse Hessian 

 BFGS, Limited-memory BFGS 

 Or use Conjugate Gradient Descent 

 For unconstrained problems, you can use these 

off-the-shelf optimization methods 

 For unconstrained non-convex problems, these 

methods will find local optima 

28 



Optimization for machine learning 
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 Goal of machine learning 

 Minimize expected loss 

  given samples 

 But we don’t know P(x,y), nor can we estimate it well  

 Empirical risk minimization 

 Substitute sample mean for expectation 

 Minimize empirical loss: L(h) = 1/n ∑i loss(h(xi),yi) 

 A.K.A. Sample Average Approximation 



Batch gradient descent 

 Let’s put our knowledge into use 

 Minimize empirical loss, assuming it’s convex 

and unconstrained 

 Gradient descent on the empirical loss: 

 At each step,  

 

 

 Note: at each step, gradient is the average of the 

gradient for all samples (i =1,...,n) 

 Very slow when n is very large 

30 



Stochastic gradient descent 

 Alternative: compute gradient from just one (or a 

few samples)  

 Known as stochastic gradient descent: 

 At each step,  

 

 

(choose one sample i and compute gradient for that 

sample only) 
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Cont’d 

 The gradient of one random sample is not the 

gradient of the objective function  

 Q1: Would this work at all? 

 Q2: How good is it? 

 A1: SGD converges to not only the empirical 

loss minimum, but also to the expected loss 

minimum! 

 A2: Convergence (to expected loss) is slow 

 f(wt) – E[f(w*)] ≤ O(1/t) or O(1/√t) 
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Practically speaking.... 

 If the training set is small:  

 batch learning using quasi-Newton or conjugate 

gradient descent 

 If the training set is large: 

 stochastic gradient descent 

 Somewhere in between 

 mini-batch 

 Convergence is very sensitive to learning rate  

 Basically, it needs to be determined by trial-and-error 

(model selection or cross-validation) 
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Constrained optimization 

 Unconstrained optimization 

 Gradient descent 

 Newton’s method 

 Batch vs online learning 

 Stochastic Gradient Descent 

 Constrained optimization 

 Lagrange duality 

 SVM in primal and dual forms 

 Constrained methods 
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Lagrangian function 
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 Original/primal problem 

 

 

     is equivalent to min-max optimization 

 

 

 Why? 

 Consider a two-player game 

 If player 1 chooses x that violates a constraint f1(x)>0, player 2 

choose λ1 → ∞ so that L(x,λ,ν) = ... + λ1f1(x) + ...  → ∞  

 Therefore, player 1 is forced to satisfy constraints 

 

Con’t 
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Dual function and dual problem 

 Dual function: 

 

 

 

 Dual problem                             (cf: Primal problem) 

 

 

    

 Q: How are primal and dual solutions related? 
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Weak duality 

 Dual function lower-bounds the primal optimal value! 
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 For convex problems, primal and dual solutions are 

equivalent! 

 

 Equivalently,   max min L(x,λ,ν) = min max L(x,λ,ν) 
 

 What does the theorem mean in practice? 
 You had a constrained minimization problem, which may be hard to 

solve 

 Dual problem may be easier to solve (simpler constrains) 

 When you solve the dual problem, it also gives the solution for the 

primal problem!  

Strong duality 
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SVM Recap 
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SVM in primal form 

  Primal SVM  

 

 

 for linearly separable cases. 

 It is a linearly constrained QP, and therefore a convex 

problem 
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SVM in dual form 
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Constrained optimization methods 

 Log barrier method 

 Projected (sub)gradient 

 Interior point method 

 Specialized methods 

 SVM: Sequential Minimal Optimization 

 Structured-output SVM: cutting-plane method 

 

 Other optimization not covered in this lecture: 

 Bayesian models: EM, variational methods 

 Discrete optimization 

 Graph optimization 
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