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CSE 5526: Introduction to Neural Networks 

Hopfield Network for 
Associative Memory 
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The next few units cover unsupervised models 

• Goal: learn the distribution of a set of observations 
• Some observations are a better “fit” than others 
• Hopfield networks store a set of observations 

• Deterministic, non-linear dynamical system 
• Boltzmann machines can behave similarly 

• Stochastic, non-linear dynamical system 
• Boltzmann machines with hidden units have a much 

greater capacity for learning the data distribution 
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Content-addressable memory basic task 

• Store a set of “fundamental memories” 
{𝛏𝛏1, 𝛏𝛏2, … , 𝛏𝛏𝑀𝑀}  

• So that when presented with a new pattern 𝐱𝐱 
• The system outputs the stored memory that is most 

similar to 𝐱𝐱 
• The first content-addressable memory we will 

consider is the Hopfield network 
• Introduced in the influential (14,000 citations) paper 

Hopfield (1982). “Neural networks and physical systems 
with emergent collective computational abilities.” PNAS. 
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Is this possible? How good can it be? 

• Is this possible to implement as a neural network? 
• For a single pattern? 

• Does it work equally well for any pattern? 
• How many patterns can such a system store? 

• How do its storage requirements compare to other sys’s? 
• How much corruption can it tolerate? 

• And still retrieve the correct pattern? 
• Corruption of noise or of partial information 
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Hopfield (1982) describes the problem 

• “Any physical system whose dynamics in phase 
space is dominated by a substantial number of 
locally stable states to which it is attracted can 
therefore be regarded as a general content-
addressable memory. The physical system will be a 
potentially useful memory if, in addition, any 
prescribed set of states can readily be made the 
stable states of the system.” 



6 CSE 5526: Hopfield Nets 

One associative memory: the Hopfield network 

• The Hopfield net consists of N McCulloch-Pitts 
neurons, recurrently connected among themselves 
 
 
 
 
 

• The network is initialized with a (corrupted) pattern 
 
 

 

… 

𝜉𝜉𝑁𝑁  𝜉𝜉2 𝜉𝜉1 

𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑁𝑁  

… 
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One associative memory: the Hopfield network 

• The Hopfield net consists of N McCulloch-Pitts 
neurons, recurrently connected among themselves 
 
 
 
 
 

• Then runs recurrently until it reaches a fixed point 
 
 

 

… 𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑁𝑁  
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State of each neuron defines the “state space” 

• The network is in state 𝒙𝒙𝑡𝑡 at time 𝑡𝑡  
• The state of the network evolves according to 

𝒙𝒙𝑡𝑡+1 = 𝜑𝜑(𝑊𝑊𝒙𝒙𝑡𝑡 + 𝒃𝒃) 
• Where we set 𝒃𝒃 = 0 without loss of generality 
• Meaning that each state leads to at most one next state 

• {𝒙𝒙1,𝒙𝒙2, … ,𝒙𝒙𝑡𝑡} is called a state trajectory 
• Goal: set 𝑊𝑊 so that state trajectory of corrupted 

memory 𝝃𝝃𝑖𝑖 + Δ converges to true memory 𝝃𝝃𝑖𝑖 
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One-shot storage phase uses Hebbian learning 

• Hopfield nets set 𝑊𝑊 using the outer-product rule, 
one choice for doing so. 

𝑊𝑊 =
1
𝑁𝑁
� 𝝃𝝃𝜇𝜇𝝃𝝃𝜇𝜇𝑇𝑇 − 𝐼𝐼
𝑀𝑀

𝜇𝜇=1

 

 Where 𝑁𝑁 is the number of bits. Or, equivalently 

𝑤𝑤𝑗𝑗𝑖𝑖 =
1
𝑁𝑁
� 𝜉𝜉𝜇𝜇,𝑗𝑗

𝑀𝑀

𝜇𝜇=1

𝜉𝜉𝜇𝜇,𝑖𝑖 − 𝛿𝛿𝑖𝑖𝑗𝑗 

• The −I and −𝛿𝛿𝑖𝑖𝑗𝑗 terms enforce 𝑊𝑊𝑖𝑖𝑖𝑖 = 0 
• no self-feedback 
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Hebbian learning 

• “Neurons that fire together, wire together” 
• In the Hopfield network, increase the weights of 

neurons that receive correlated inputs 
• This notion is symmetric between neurons 

• And since 𝑤𝑤𝑗𝑗𝑖𝑖 = 𝑤𝑤𝑖𝑖𝑗𝑗, the weight matrix is symmetric 
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Retrieval phase 

• Play out dynamics 𝒙𝒙𝑡𝑡+1 = 𝜑𝜑(𝑊𝑊𝒙𝒙𝑡𝑡) 
• Until reaching a stable state 𝒙𝒙𝑡𝑡+1 = 𝒙𝒙𝑡𝑡 
• If argument to 𝜑𝜑 ⋅  is 0, neuron stays in previous state 

– Leads to symmetric flow diagrams 

• Can also use “asynchronous” updates 
• Pick one neuron at random 
• Update it based on the others 
• Repeat 
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With one memory, that memory is stable 

• Let the input 𝐱𝐱0 be the same as the single memory 𝛏𝛏 

𝒙𝒙1 = 𝜑𝜑 𝑊𝑊𝒙𝒙0 = 𝜑𝜑
1
𝑁𝑁

𝝃𝝃𝝃𝝃𝑇𝑇 − 𝐼𝐼 𝝃𝝃  

= 𝜑𝜑
1
𝑁𝑁
𝝃𝝃(𝝃𝝃𝑇𝑇𝝃𝝃 − 1)  

= 𝜑𝜑
𝝃𝝃 2 − 1
𝑁𝑁

𝝃𝝃  

   = 𝜑𝜑 𝑁𝑁−1
𝑁𝑁
𝝃𝝃 = 𝝃𝝃 

 Therefore the memory is stable 
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Aside: Hamming distance is the number of  
differing bits between two patterns 

• Hamming distance of 1 from +1, +1, +1  
• +1, +1,−1 , +1,−1, +1 , −1, +1, +1  

• Hamming distance of 2 from +1, +1, +1  
• +1,−1,−1 , −1, +1,−1 , −1,−1, +1  

• Hamming distance of 3 from +1, +1, +1  
• −1,−1,−1  

• For 𝑥𝑥1, 𝑥𝑥2 ∈ ±1 𝑁𝑁, 𝑥𝑥1𝑇𝑇𝑥𝑥2 = 𝑁𝑁 − 2𝑑𝑑𝐻𝐻 𝑥𝑥1, 𝑥𝑥2  
• So −𝑁𝑁 ≤ 𝑥𝑥1𝑇𝑇𝑥𝑥2 ≤ 𝑁𝑁 
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With one memory, Hopfield net 
converges to the closer of 𝛏𝛏 or −𝛏𝛏 

• For input of 𝒙𝒙0 

𝒙𝒙1 = 𝜑𝜑
1
𝑁𝑁
𝑊𝑊𝒙𝒙0 = 𝜑𝜑

1
𝑁𝑁

𝝃𝝃𝝃𝝃𝑇𝑇 − 𝐼𝐼 𝒙𝒙0  

= 𝜑𝜑
1
𝑁𝑁

𝝃𝝃𝝃𝝃𝑇𝑇𝒙𝒙0 − 𝒙𝒙0  

       = ±𝝃𝝃 
• Assuming that 𝝃𝝃𝑇𝑇𝒙𝒙0 > 1 

• Closer is measured by inner product 
• Or equivalently in this case, by Hamming distance 
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Example: Hopfield net with one memory 

• Let’s use 𝝃𝝃 = −1, +1,−1 𝑇𝑇, then 

𝑊𝑊 =
1
3

   0 −1 +1
−1    0 −1
+1 −1    0

 

 
• Test memory stability 

𝑊𝑊𝝃𝝃 =
1
3

   0 −1 +1
−1    0 −1
+1 −1    0

−1
+1
−1

=
1
3

−2
+2
−2

 

• So 𝜑𝜑 𝑊𝑊𝝃𝝃 = 𝝃𝝃 
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Example: Hopfield net with one memory 

• Follow state trajectory from 𝒙𝒙1 = −1,−1, +1 𝑇𝑇 

𝑊𝑊𝒙𝒙1 =
1
3

   0 −1 +1
−1    0 −1
+1 −1    0

−1
−1
+1

=
1
3

2
0
0

 

• So 𝜑𝜑 𝑊𝑊𝒙𝒙1 = +1,−1, +1 𝑇𝑇 = −𝝃𝝃 
 

• Follow state trajectory from 𝒙𝒙2 = +1, +1,−1 𝑇𝑇 

𝑊𝑊𝒙𝒙2 =
1
3

   0 −1 +1
−1    0 −1
+1 −1    0

+1
+1
−1

=
1
3

−1
   0
   0

 

• So 𝜑𝜑 𝑊𝑊𝒙𝒙2 = −1, +1,−1 𝑇𝑇 = 𝝃𝝃 
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For a Hopfield net with multiple memories 

• The stability condition for any memory 𝛏𝛏𝜗𝜗 is 
 

𝝃𝝃𝜗𝜗 = 𝜑𝜑 𝑊𝑊𝝃𝝃𝜗𝜗  

= 𝜑𝜑
1
𝑁𝑁
�𝝃𝝃𝜇𝜇𝝃𝝃𝜇𝜇𝑇𝑇 − 𝐼𝐼
𝜇𝜇

𝝃𝝃𝜗𝜗  

= 𝜑𝜑
𝑁𝑁 −𝑀𝑀 + 1

𝑁𝑁
𝝃𝝃𝜗𝜗 +

1
𝑁𝑁
� 𝝃𝝃𝜇𝜇𝝃𝝃𝜇𝜇𝑇𝑇𝝃𝝃𝜗𝜗
𝜇𝜇≠𝜗𝜗

 

 
 

 
  

crosstalk 
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Multiple memories can be stored if 𝑀𝑀 ≪ 𝑁𝑁 

• Crosstalk is a weighted sum of the memories 
• If memories are random variables (i.e., uncorrelated 

with each other) 
• Then this is a sum of 𝑁𝑁(𝑀𝑀 − 1) random ±1 variables 
• Which is asymptotically Gaussian 

• If the crosstalk is small, compared to the 𝝃𝝃𝜗𝜗 term  
• Then the memory system is stable 
• In general, fewer memories are more likely stable 

• More on this shortly 
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Example 2 from textbook 

• Consider the Hopfield 
network with 
 

𝑊𝑊 =
1
3

   0 −2 +2
−2    0 −2
+2 −2    0

 

 
• 8 possible states 

• See where each goes 
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Two states are stable 

• Two states are stable 
• 𝝃𝝃1 = +1,−1, +1 𝑇𝑇 and 𝝃𝝃2 = −1, +1,−1 𝑇𝑇 = −𝝃𝝃1 

𝑊𝑊𝝃𝝃1 =
1
3

   0 −2 +2
−2    0 −2
+2 −2    0

+1
−1
+1

=
1
3

+4
−4
+4

 

• So 𝜑𝜑 𝑊𝑊𝝃𝝃1 = 𝝃𝝃1 
 

𝑊𝑊𝝃𝝃2 =
1
3

   0 −2 +2
−2    0 −2
+2 −2    0

−1
+1
−1

=
1
3

−4
+4
−4

 

• So 𝜑𝜑 𝑊𝑊𝝃𝝃2 = 𝝃𝝃2 
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Weight matrix agrees with the one  
calculated from the two stable states 

𝑊𝑊 =
1
3
𝜉𝜉1𝜉𝜉1𝑇𝑇 +

1
3
𝜉𝜉2𝜉𝜉2𝑇𝑇 −

2
3
𝐼𝐼 

=
1
3

+1
−1
+1

+1,−1, +1 +
1
3

−1
+1
−1

−1, +1,−1 −
2
3
𝐼𝐼 

=
1
3

3 −1 +1
−1 3 −1
+1 −1 3

+
1
3

3 −1 +1
−1 3 −1
+1 −1 3

−
2
3
𝐼𝐼 

=
1
3

   0 −2 +2
−2    0 −2
+2 −2    0
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Asynchronous updates  
follow this flow diagram 
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Memory capacity for a single bit: 
Prob of error is defined by amount of cross-talk 

• Define 

𝐶𝐶𝑗𝑗𝜗𝜗 = −𝜉𝜉𝜗𝜗,𝑗𝑗�� 𝜉𝜉𝜇𝜇,𝑗𝑗𝜉𝜉𝜇𝜇,𝑖𝑖𝜉𝜉𝜗𝜗,𝑖𝑖 
𝜇𝜇≠𝜗𝜗𝑖𝑖

 

• Amount cross-talk pushes bit 𝑗𝑗 in the wrong 
direction 

𝐶𝐶𝑗𝑗𝜗𝜗 < 0    ⇒     stable 
0 ≤ 𝐶𝐶𝑗𝑗𝜗𝜗 < 𝑁𝑁    ⇒     stable 
𝐶𝐶𝑗𝑗𝜗𝜗 > 𝑁𝑁    ⇒     unstable 
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Capacity: Crosstalk is approximately Gaussian 

• Consider random memories where each element 
takes +1 or −1 with equal probability.  

• For random patterns, 𝐶𝐶𝑗𝑗𝜗𝜗 is proportional to a sum of 
𝑁𝑁(𝑀𝑀 − 1) random numbers of +1 or −1 

• For large 𝑁𝑁𝑀𝑀, it can be approximated by a Gaussian 
distribution (central limit theorem)  
• With zero mean and variance 𝜎𝜎2 = 𝑁𝑁𝑀𝑀 

• Capacity 𝑀𝑀𝑚𝑚𝑚𝑚𝑥𝑥 is defined by an error criterion 
• Acceptable level of 𝑃𝑃error = Prob(𝐶𝐶𝑗𝑗𝜗𝜗 > 𝑁𝑁) 
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Capacity: Prob of error is a function of 𝑁𝑁/𝑀𝑀 

• So 

𝑃𝑃error =
1

2π𝜎𝜎
� exp −

𝑥𝑥2

2𝜎𝜎2
∞

𝑁𝑁
d𝑥𝑥 

 

                        =
1
2
−

1
2π𝜎𝜎

� exp −
𝑥𝑥2

2𝜎𝜎2
𝑁𝑁

0
d𝑥𝑥 

                                 

=
1
2

1 −
2
π
� exp −𝜇𝜇2

𝑁𝑁/(2𝑀𝑀)

0
d𝜇𝜇  

 
 

error function 

define 𝜇𝜇 =
𝑥𝑥

𝜎𝜎 2 



26 CSE 5526: Hopfield Nets 

Capacity: Visualizing prob of error 

• So 𝑃𝑃error = 1
2

1 − erf 𝑁𝑁
2𝑀𝑀

 

x 
𝑁𝑁
2𝑀𝑀  

𝑃𝑃(𝐶𝐶𝑗𝑗𝝑𝝑) 
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Capacity: Lower error prob requires smaller 𝑀𝑀 

𝑃𝑃error 𝑴𝑴max/𝑵𝑵 
0.001 0.105 

0.0036 0.138 
0.01 0.185 
0.05 0.37 
0.1 0.61 

• So 𝑃𝑃error < 0.01 ⇒ 𝑀𝑀max = 0.185𝑁𝑁, an upper bound 
• Or 0.138N just to be safe 
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To get all 𝑁𝑁 bits correct requires smaller 𝑀𝑀 

• The above analysis is for one bit  
• If we want perfect retrieval for 𝛏𝛏𝜗𝜗 with prob 0.99 

(1 − 𝑃𝑃error)𝑁𝑁> 0.99 
• Approximately 𝑃𝑃error < 0.01

𝑁𝑁
 

• For this case 𝑀𝑀max = 𝑁𝑁
2log 𝑁𝑁

  

• See (McEliece, Posner, Rodemich, and Venkatesh, 1987) 
• This is a bit disappointing compared to various error 

correction codes 
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Non-random memories modify capacity 

• Real patterns are not random 
• Although they could be encoded to be almost random 
• The capacity is worse for correlated patterns 

• At the favorable extreme, for orthogonal memories 

�𝜉𝜉𝜇𝜇,𝑖𝑖𝜉𝜉𝜗𝜗,𝑖𝑖
𝑖𝑖

= 0    for 𝜗𝜗 ≠ 𝜇𝜇 

then 𝐶𝐶𝑗𝑗𝜗𝜗 = 0 and 𝑀𝑀max = 𝑁𝑁  
• This is the maximum number of orthogonal patterns 
• Use fewer memories to allow some evolution, otherwise, why bother? 
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Coding illustration 
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Energy function (Lyapunov function) 

• The existence of an energy (Lyapunov) function for 
a dynamical system ensures its stability 

• The energy function for the Hopfield net is 

𝐸𝐸 𝐱𝐱 = −
1
2
��𝑤𝑤𝑗𝑗𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗

𝑗𝑗𝑖𝑖

= −
1
2
𝒙𝒙𝑇𝑇𝑊𝑊𝒙𝒙 

• Theorem: Given symmetric weights, 𝑤𝑤𝑗𝑗𝑖𝑖 = 𝑤𝑤𝑖𝑖𝑗𝑗, the 
energy function does not increase as the Hopfield 
net evolves asynchronously 
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Energy function (cont.) 

• Let 𝑥𝑥𝑗𝑗′ be the new value of 𝑥𝑥𝑗𝑗 after an update 
 

𝑥𝑥𝑗𝑗′ = 𝜑𝜑 �𝑤𝑤𝑗𝑗𝑖𝑖𝑥𝑥𝑖𝑖
𝑖𝑖

 

 
• If 𝑥𝑥𝑗𝑗′ = 𝑥𝑥𝑗𝑗, 𝐸𝐸 remains the same 
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Energy function (cont.) 

• Otherwise, 𝑥𝑥𝑗𝑗′ = −𝑥𝑥𝑗𝑗: 
• Let 𝑠𝑠 be a vector of 1s except for 𝑠𝑠𝑗𝑗 = −1 

𝐸𝐸 𝑥𝑥′ − 𝐸𝐸 𝑥𝑥 = −
1
2
��𝑤𝑤𝑘𝑘𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑘𝑘𝑠𝑠𝑖𝑖𝑠𝑠𝑘𝑘

𝑘𝑘𝑖𝑖

+
1
2
��𝑤𝑤𝑘𝑘𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑘𝑘

𝑘𝑘𝑖𝑖

 

    = −�𝑤𝑤𝑗𝑗𝑖𝑖𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗𝑠𝑠𝑗𝑗
𝑖𝑖≠𝑗𝑗

+ �𝑤𝑤𝑘𝑘𝑗𝑗𝑥𝑥𝑗𝑗𝑥𝑥𝑘𝑘𝑠𝑠𝑗𝑗
𝑘𝑘≠𝑗𝑗

 

= −2𝑥𝑥𝑗𝑗𝑠𝑠𝑗𝑗�𝑤𝑤𝑗𝑗𝑖𝑖𝑥𝑥𝑖𝑖
𝑖𝑖≠𝑗𝑗

 

  = 2𝑥𝑥𝑗𝑗�𝑤𝑤𝑗𝑗𝑖𝑖𝑥𝑥𝑖𝑖
𝑖𝑖≠𝑗𝑗

< 0 

 

 
 

since 𝑊𝑊 = 𝑊𝑊𝑇𝑇
 

different signs 
by assumption 
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Energy function (cont.) 

• Thus, 𝐸𝐸(𝐱𝐱) decreases every time 𝑥𝑥𝑗𝑗 flips. Since 𝐸𝐸 is 
bounded, the Hopfield net is always stable 
 

• Remarks: 
• Useful concepts from dynamical systems: attractors, 

basins of attraction, energy (Lyapunov) surface or 
landscape 
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Energy contour map 
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2-D energy surface 
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Memory recall illustration 

Hertz, Krogh, and 
Palmer (1991), Ch 2 
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Remarks (cont.) 

• Bipolar neurons can be extended to continuous-
valued neurons by using hyperbolic tangent 
activation function, and discrete update can be 
extended to continuous-time dynamics (good for 
analog VLSI implementation) 

• The concept of energy minimization has been 
applied to optimization problems (neural 
optimization) 
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Spurious states 

• Not all local minima (stable states) correspond to 
fundamental memories.  

• Other attractors: 
• −𝛏𝛏 𝜇𝜇 

• linear combination of odd number of memories 
• other uncorrelated patterns 

• Such attractors are called spurious states 
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Spurious states (cont.) 

• Spurious states tend to have smaller basins and 
occur higher on the energy surface 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

local minima  
for spurious states 
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Kinds of associative memory 

• �
Autoassociative (e.g. Hopfieled net)                       

                                
Heteroassociative: store pairs 𝑥𝑥𝜇𝜇 ,𝑦𝑦𝜇𝜇  explicitly

 

𝐱𝐱 

𝐲𝐲 

matrix memory 
(Anderson 1972) 

holographic memory 
(van Heerden, 1963) 
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