CSE 5526: Introduction to Neural Networks

Hopfield Network for
Assoclative Memory
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The next few units cover unsupervised models

e Goal: learn the distribution of a set of observations
* Some observations are a better “fit” than others

* Hopfield networks store a set of observations
* Deterministic, non-linear dynamical system

* Boltzmann machines can behave similarly
* Stochastic, non-linear dynamical system

e Boltzmann machines with hidden units have a much
greater capacity for learning the data distribution
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Content-addressable memory basic task

e Store a set of “fundamental memories”

{El' EZ! " EM}

* So that when presented with a new pattern x

* The system outputs the stored memory that Is most
similar to x

* The first content-addressable memory we will
consider is the Hopfield network

* |Introduced in the influential (14,000 citations) paper
Hopfield (1982). “Neural networks and physical systems
with emergent collective computational abilities.” PNAS.
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Is this possible? How good can it be?

* |s this possible to implement as a neural network?
* For asingle pattern?

* Does it work equally well for any pattern?
* How many patterns can such a system store?
* How do its storage requirements compare to other sys’s?

* How much corruption can it tolerate?
* And still retrieve the correct pattern?
e Corruption of noise or of partial information
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Hopfield (1982) describes the problem

* “Any physical system whose dynamics in phase
space Is dominated by a substantial number of
locally stable states to which it is attracted can
therefore be regarded as a general content-
addressable memory. The physical system will be a
potentially useful memory if, in addition, any
prescribed set of states can readily be made the
stable states of the system.”
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One associative memory: the Hopfield network

* The Hopfield net consists of N McCulloch-Pitts
neurons, recurrently connected among themselves

® © - ¢

SN

* The network is initialized with a (corrupted) pattern
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One associative memory: the Hopfield network

* The Hopfield net consists of N McCulloch-Pitts
neurons, recurrently connected among themselves

O O

* Then runs recurrently until it reaches a fixed point
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State of each neuron defines the “state space”

* The network Is In state x; at time t

* The state of the network evolves according to
Xtv1 = @(Wxy + b)
* Where we set b = 0 without loss of generality
* Meaning that each state leads to at most one next state

e {x1,X,,..,X¢} IS called a state trajectory

* Goal: set W so that state trajectory of corrupted
memory &; + A converges to true memory §;
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One-shot storage phase uses Hebbian learning

* Hopfield nets set W using the outer-product rule,
one choice for doing so.

M
1 T
W=y D, Sk
u=1
Where N is the number of bits. Or, equivalently
M
1
wj; = Nz SujSwi — Oij
u=1

* The —I and —4;; terms enforce W;; = 0

e no self-feedback
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Hebbian learning

* “Neurons that fire together, wire together”

* |n the Hopfield network, increase the weights of
neurons that receive correlated inputs

* This notion Is symmetric between neurons
* And since wj; = w;;, the weight matrix Is symmetric
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Retrieval phase

* Play out dynamics x;,; = @ (W x;)
* Until reaching a stable state x;,; = x;

* Ifargument to ¢(:) is 0, neuron stays in previous state
— Leads to symmetric flow diagrams

* Can also use “asynchronous” updates
* Pick one neuron at random
* Update it based on the others
* Repeat
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With one memory, that memory Is stable

* |etthe input x, be the same as the single memory &

1
x1=oWxqp) =9 (N (ffT — I)f)
1
=@ (Nf(fo — 1))

2 1
, (uenN e)

=p("—¢)=¢

Therefore the memory Is stable
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Aside: Hamming distance Is the number of
differing bits between two patterns

 Hamming distance of 1 from {+1,+1, +1}
o {+1,+1,—-1}, {+1,-1,+1}, {-1,+1,+1}
 Hamming distance of 2 from {+1, +1, +1}
o {+1,-1,—-1},{-1,+1,-1}, {-1,-1,+1}
 Hamming distance of 3 from {+1,+1, +1}
o {—1,—-1,—1}
° Forxy,x, € {1}, xI'x, = N — 2dy(xq, x3)
* So—N<x{x, <N
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With one memory, Hopfield net
converges to the closer of € or —&

* For input of x
1 1. .
X1 =@ (NW%) =@ (ﬁ(ff — I)x())
1
=@ (N (§&"xo — xo))

= +¢&
e Assuming that |§Tx,| > 1

* Closer is measured by inner product
* Or equivalently in this case, by Hamming distance
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Example: Hopfield net with one memory

° Let’'suse & = [—1,+1,—1]%, then

[0 -1 +1
w=2|-1 0 -1
+1 -1 0.

* Test memory stability

1 0 —1 +4+11[—-1 1 —2]
Wé = § —1 0 —-1||+1]|= § +2
+1 -1 0O1L—1. |—2.

°* Sop(Wé) =¢&
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Example: Hopfield net with one memory

* Follow state trajectory fromx; = [-1,—-1,+1]"

([0 =1 +1][-1] 4[2
Wi, =2|-1 0 —1f|-1|=20
+1 -1 oll+1l “lo

°* Sop(Wx,) = [+1,—-1,+1]F = -¢

* Follow state trajectory from x, = [+1,+1, —1]"

1 0 -1 +171[+1 1 —1]
Wx, =§ —1 0 -—-1{|+1 =§ 0
+1 -1 01 L—1. L 0.

e S0 p(Wx,) = [—1,+1,—1]"
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For a Hopfield net with multiple memories

* The stability condition for any memory &4 IS

$o = p(Wéy)

1
= ¢ (NZ £ué] —1) £
U

N—M+1 1
=<p( oty ) fufﬂs‘ﬁ)

u+09
\ J
v

crosstalk
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Multiple memories can be stored If M < N

* Crosstalk Is a weighted sum of the memories

* |f memories are random variables (i.e., uncorrelated
with each other)

* Then thisisasum of N(M — 1) random +1 variables
* Which is asymptotically Gaussian

* |f the crosstalk is small, compared to the &4 term
* Then the memory system is stable
* |In general, fewer memories are more likely stable

* More on this shortly
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Example 2 from textbook

* Consider the Hopfield
network with

[0 =2 +2
w=2|-2 0 -2
+2 -2 0.

* 8 possible states
* See where each goes
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Two states are stable

* Two states are stable
e & =[+1,-1,+1]" and &, = [-1,+1,—-1]F = =¢,

([0 =2 +2|[+1] q[+4
Wé =2[-2 0 —2||-1f=5|-4
+2 -2 oll+1l “l4+4.

°* Sop(Wéy) =&

1] 0 -2 +2]1[—-1 1[4
Wwé, = 3 —2 0 =2|[+1|= 3 +4
+2 -2 011L—-1. |—4

°* Sop(Wé,) =&,
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Weight matrix agrees with the one
calculated from the two stable states

1 . 1. . 2

o W:§€1€1 +g_€2f2 _§I

1[+1 1[~1 2

=—|-1|[]+1,-1,+1]|+=|+1]|[-1,+1,—-1] —=1I
3

1 -3 3
13 -1 +11 4[3 -1 +1] ,
=z[-1 3 —1+3[-1 3 —1]-3

+1 -1 3. +1 -1 3.
0 =2 +2]

1
=z|-2 0 -2
+2 -2 0.
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Asynchronous updates
follow this flow diagram

¥
A
Y3
=111 (1,1,1)
Stable state
(—-1,1,—1)
Stable state e
A et bl =113
.J

(=1,—-1,-1) (1,-1,-1)
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Memory capacity for a single bit:
Prob of error is defined by amount of cross-talk
* Define

Cjﬁ = —fﬁ,jz z s;u,jfu,ifﬁ,i

I u+o
* Amount cross-talk pushes bit j in the wrong
direction

Cj'9 <0 = stable
0< Cjﬁ <N = stable
Cj’9 > N = unstable
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Capacity: Crosstalk 1s approximately Gaussian

e Consider random memories where each element
takes +1 or —1 with equal probability.

* For random patterns, Cj‘9 IS proportional to a sum of
N(M — 1) random numbers of +1 or —1

* For large NM, It can be approximated by a Gaussian
distribution (central limit theorem)

 With zero mean and variance 6% = NM
* Capacity M, .. Is defined by an error criterion
e Acceptable level of Perror = Prob(C;” > N)
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Capacity: Prob of error is a function of N/M

°* SO
1 % x?
Perror = N fN €Xp T 952 dx
1 1 fN ( x? )d
= — — ex X
2 V21o Jy P 202
define,u=i

aV2

1 JN/(2M)
= (1 -— f exp(—4?) du)

!

error function
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Capacity: Visualizing prob of error

1 /N
* SO Perror :E(l—erf< ﬁ))

P(C”)

2=
N
P
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Capacity: Lower error prob requires smaller M

0.001 0.105
0.0036 0.138
0.01 0.185
0.05 0.37
0.1 0.61

* SO0 Peorror < 0.01 = Myax = 0.185N, an upper bound
* Or 0.138N just to be safe
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To get all N bits correct requires smaller M

* The above analysis Is for one bit

* |f we want perfect retrieval for € with prob 0.99
(1 — Perror)"> 0.99

* Approximately Porror < %

N
2log N
* See (McEliece, Posner, Rodemich, and Venkatesh, 1987)

* This Is a bit disappointing compared to various error
correction codes

* For this case Mypax =
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Non-random memories modify capacity

* Real patterns are not random

* Although they could be encoded to be almost random
* The capacity Is worse for correlated patterns

* At the favorable extreme, for orthogonal memories

2 £,:€9i=0 ford #p
[

9
then C;” = 0and Mmax = N

* This is the maximum number of orthogonal patterns
* Use fewer memories to allow some evolution, otherwise, why bother?
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Space of
fundamental
memories
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Coding illustration

Encoding

Decoding

Space of
stored vectors
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Energy function (Lyapunov function)

* The existence of an energy (Lyapunov) function for
a dynamical system ensures its stability

* The energy function for the Hopfield net is
1 1
E(X) — —E Z WjiXiXj = —ExTWx
L]
* Theorem: Given symmetric weights, w;; = w;;, the

energy function does not increase as the Hopfield
net evolves asynchronously
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Energy function (cont.)

* Let x;’ be the new value of x; after an update

.X'j’ = @ (2 Wjixl')
L

o |f x]f = x;j, E remains the same
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Energy function (cont.)

* Otherwise, x; = —x;:
* Lets be avector of 1s except for s; =

E(x")—E(x) = ——ZEwklx X1 S; S + ZZZWk‘x X
— z WjiXinSj + z ijXijSj

L#] k+j

since W = wT = —2X;S; z Wi X;

I#]

—ZxZ ix; <0

li]
~N
different signs
by assumption
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Energy function (cont.)

* Thus, E(x) decreases every time x; flips. Since E Is
bounded, the Hopfield net Is always stable

* Remarks:

* Useful concepts from dynamical systems: attractors,
basins of attraction, energy (Lyapunov) surface or
landscape
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Energy contour map

- = P P P P P P P = P P — —P

\

- 4 44— 44— 4 — < -

- - 4 4 4 w4 -4 44— - -4 44—

) =
CSE 5526: Hopfield Nets

- = = = = = = = = = = — —P

A

35



2-D energy surface
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Memory recall illustration

Hertz, Krogh, and
Palmer (1991), Ch 2
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Remarks (cont.)

* Bipolar neurons can be extended to continuous-
valued neurons by using hyperbolic tangent
activation function, and discrete update can be
extended to continuous-time dynamics (good for
analog VLSI implementation)

* The concept of energy minimization has been
applied to optimization problems (neural
optimization)
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Spurious states

* Not all local minima (stable states) correspond to
fundamental memaories.

* (Other attractors:
° —E .
* |inear combination of odd number of memories
* other uncorrelated patterns

* Such attractors are called spurious states
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Spurious states (cont.)

* Spurious states tend to have smaller basins and
occur higher on the energy surface

T

local minima
for spurious states
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Kinds of associative memory

® <

N\

N

N
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(Autoassociative (e.g. Hopfieled net)

\Heteroassociative: store pairs (xw yﬂ) explicitly

matrix memory
(Anderson 1972)

holographic memory
(van Heerden, 1963)
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