CSE 5526: Introduction to Neural Networks

Unsupervised learning and
Self-organizing maps
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Types of learning

e Supervised learning: Detailed desired output is
provided externally

* Reinforcement learning: Desired end state of an
Interaction with environment is provided

* Learn best actions to take to get there

* Unsupervised learning: Discover structure in data
* E.g., competitive learning and self organization
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Winner-take-all (WTA) networks
Implement competitive dynamics

* Recurrent neural network
* Each neuron excited by input
* Recurrent dynamics eventually lead to one “winner”
* Update winning neuron to be more sensitive to that input

e Similar to K-means algorithm

* Two different architectures
e Global inhibition
e Mutual inhibition
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Global inhibition has simple dynamics

* Requires 3m inter-connections for m neurons
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Mutual inhibition has complex dynamics

* Requires m? inter-connections for m neurons
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Spatial position in a brain area frequently
maps to meaningful perceptual dimensions

* Maps are commonly

found in the brain
* Retinotopic maps
* Tonotopic maps

* Somatosensory (tactile)

maps
* Motor maps
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Spatial position in a brain area frequently
maps to meaningful effector dimensions

* Maps are commonly
found in the brain R,
* Retinotopic maps \1\
* Tonotopic maps \
* Somatosensory (tactile) % o e
maps i
* Motor maps o T

Medial Lateral
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Spatial maps can arise
from simple learning rules

* Topological maps in the brain could arise from
many factors

* Genetics via chemical gradients
* Spontaneous firing of neurons
* Firing In response to sensory inputs
* |tis possible to create them in artificial neural
networks based only on “sensory” inputs
* For example in self-organizing maps (SOMs)
* Like K-means, but with organized means
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A self-organizing map is a WTA network
with a notion of distance between neurons

Two-dimensional array
of postsynaptic neurons

Bundle of synaptic
connections.

Winning
neuron

[nput

(b) Kohonen model
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A self-organizing map is a WTA network
with a notion of distance between neurons

* Each node in the SOM has a prototype vector
* Computes activation based on distance to an input
* What it’s looking for or excited by

* Each node in the SOM has a set of neighbors
* Or a distance function to the rest of the neurons

* |earning in the SOM adjusts the prototypes

* So that neurons that are “close” to each other
have prototypes that are “close” to each other

* |earns a nonlinear dimensionality reduction
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2D SOM learning 2D data
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1D SOM learning 2D data
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SOM training

* Activate neurons based on distance to inputs
* Find winner, the neuron most activated

e Update neurons based on distance to winner
* \Winner’s prototype is updated to be closer to input
* Neighbors’ prototypes are updated less
* Far away neurons are not updated
* No global objective being optimized
* But interesting behavior in practice
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SOM training equations

* Weight update

w;(n + 1) = w;(1) + (A 10 () [x (1) — w; ()]
e i(x) indicates the winning neuron
* h;; denotes a neighborhood function centered at neuron i

* Atypical choice for h; ; Is a Gaussian function

2
dj,i

- 202(n)

* d;; denotes the Euclidean distance between neuron j and
i on the output layer

hji(n) = exp
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Gausslan h; ; as a function of d; ;

0

* h;;ord;; can also be computed in other ways
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SOM training example:
Initial configuration of neuron prototypes

X2
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SOM training example:
Observe point
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SOM training example:
Find closest neuron to observation

X2
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SOM training example:
Activate neurons close in grid to that neuron

X2
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SOM training example:
Move selected neurons towards observation

N

X2
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SOM training example:
Observe next point
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SOM training example:
After many iterations
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SOMs use two phases of learning

* |nitial ordering phase
* Align output manifold to data manifold
* Bring neural neighbors’ representations together
e n and o are high

* Subsequent convergence phase
* Fine-tune representation at each neuron
* Little or no interaction across neurons
e n and o are low
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Two phases of SOM training

* Ordering phase: This phase Is to achieve
topological ordering of weight vectors

* One approach is to set

o(n) = 7y - (1—1%) 1(n) = o - (1—NO’_1K)

® g, Is the initial (large) Gaussian width and N, Is the
number of iterations for the phase

* 1o IS the Initial learning rate and K is another parameter
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Two phases of training (cont.)

* Alternatively, we can set a(n) and n(n) as given in
textbook

o(n) =g, - exp (— :—1>
n
= -op(-2)

where 7, and t, are called time constants
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Two phases of training (cont.)

* Convergence phase. This phase fine-tunes the
output neurons to match the input distribution

* For the convergence phase, h; ;(n) should contain

just the nearest neighbors, which may reduce to one
neuron. n should be small.
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SOM with a trivial neighborhood
reduces to competitive learning

* For the special case of a neighborhood function that
Includes just the winning neuron, SOM reduces to
competitive learning:

Here y; Is the (binary) response of neuron j (1 if it is the

winner, O if not)
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Competitive learning is online K-means
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2D SOM on 2D data
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1D SOM on 1D data

0.8
0.6
0.4;00.‘... ~'.‘..:

e o ..o L] s (14 1%, =
0.2 Joged (P 5 o o, o Uhe fs

Time =50 K
(¢) Ordering phase

CSE 5526: SOMs

1
0.5+
0_
—-05
_1 |
—1 0
Time =0
(b) Initial weights
o Q@ e
D o % 80 ‘v)
(S ‘J (8 77
0.8 & e ) o
N
P Q (PE-6 o c“ (\)
o YA, .‘
Q Q) ‘) ) A
0.6 ",’ @ & @ ‘\’ > &)
c £ »
04/%ePS o P T %
A 0, [ago v’l U 7
A ("
D A ¢ RN O o8
0 Cavi e (5
0 0.5
Time = 100 K

(d) Converging phase




)

(cont

SOM illustrations
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SOM illustrations (cont.)
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Kohonen (1990)
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Elastic net for traveling salesman problem

(b)
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Durbin & Willshaw (1987)
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