CSE 5526: Introduction to Neural Networks

Unsupervised learning and Self-organizing maps

CSE 5526: SOMs

Types of learning

- Supervised learning: Detailed desired output is provided externally
- Reinforcement learning: Desired end state of an interaction with environment is provided
 - Learn best actions to take to get there
- Unsupervised learning: Discover structure in data
 - E.g., competitive learning and self organization

Winner-take-all (WTA) networks implement competitive dynamics

- Recurrent neural network
 - Each neuron excited by input
 - Recurrent dynamics eventually lead to one "winner"
 - Update winning neuron to be more sensitive to that input
- Similar to *K*-means algorithm
- Two different architectures
 - Global inhibition
 - Mutual inhibition

Global inhibition has simple dynamics

• Requires 3*m* inter-connections for *m* neurons

Mutual inhibition has complex dynamics

• Requires m^2 inter-connections for m neurons

Spatial position in a brain area frequently maps to meaningful perceptual dimensions

- Maps are commonly found in the brain
 - Retinotopic maps
 - Tonotopic maps
 - Somatosensory (tactile) maps
 - Motor maps

Spatial position in a brain area frequently maps to meaningful effector dimensions

- Maps are commonly found in the brain
 - Retinotopic maps
 - Tonotopic maps
 - Somatosensory (tactile) maps
 - Motor maps

B Motor homunculus

Spatial maps can arise from simple learning rules

- Topological maps in the brain could arise from many factors
 - Genetics via chemical gradients
 - Spontaneous firing of neurons
 - Firing in response to sensory inputs
- It is possible to create them in artificial neural networks based only on "sensory" inputs
 - For example in self-organizing maps (SOMs)
 - Like *K*-means, but with organized means

A self-organizing map is a WTA network with a notion of distance between neurons

A self-organizing map is a WTA network with a notion of distance between neurons

- Each node in the SOM has a prototype vector
 - Computes activation based on distance to an input
 - What it's looking for or excited by
- Each node in the SOM has a set of neighbors
 - Or a distance function to the rest of the neurons
- Learning in the SOM adjusts the prototypes
 - So that neurons that are "close" to each other have prototypes that are "close" to each other
- Learns a nonlinear dimensionality reduction

2D SOM learning 2D data

CSE 5526: SOMs

1D SOM learning 2D data

CSE 5526: SOMs

SOM training

- Activate neurons based on distance to inputs
 - Find winner, the neuron most activated
- Update neurons based on distance to winner
 - Winner's prototype is updated to be closer to input
 - Neighbors' prototypes are updated less
 - Far away neurons are not updated
- No global objective being optimized
 - But interesting behavior in practice

SOM training equations

• Weight update

$$\mathbf{w}_j(n+1) = \mathbf{w}_j(n) + \eta(n)h_{j,i(\mathbf{x})}(n)\big[\mathbf{x}(n) - \mathbf{w}_j(n)\big]$$

- *i*(**x**) indicates the winning neuron
- $h_{j,i}$ denotes a neighborhood function centered at neuron *i*
- A typical choice for $h_{j,i}$ is a Gaussian function

$$h_{j,i}(n) = \exp\left[-\frac{d_{j,i}^2}{2\sigma^2(n)}\right]$$

d_{j,i} denotes the Euclidean distance between neuron *j* and *i* on the output layer

Gaussian $h_{j,i}$ as a function of $d_{j,i}$

• $h_{j,i}$ or $d_{j,i}$ can also be computed in other ways

SOM training example: Initial configuration of neuron prototypes

SOM training example: Observe point

SOM training example: Find closest neuron to observation

SOM training example: Activate neurons close **in grid** to that neuron

SOM training example: Move selected neurons towards observation

SOM training example: Observe next point

SOM training example: After many iterations

SOMs use two phases of learning

- Initial ordering phase
 - Align output manifold to data manifold
 - Bring neural neighbors' representations together
 - η and σ are high
- Subsequent convergence phase
 - Fine-tune representation at each neuron
 - Little or no interaction across neurons
 - η and σ are low

Two phases of SOM training

- Ordering phase: This phase is to achieve topological ordering of weight vectors
- One approach is to set

$$\sigma(n) = \sigma_0 \cdot \left(1 - \frac{n}{N_0}\right) \quad \eta(n) = \eta_0 \cdot \left(1 - \frac{n}{N_0 + K}\right)$$

- σ_0 is the initial (large) Gaussian width and N_0 is the number of iterations for the phase
- η_0 is the initial learning rate and *K* is another parameter

Two phases of training (cont.)

Alternatively, we can set σ(n) and η(n) as given in textbook

$$\sigma(n) = \sigma_0 \cdot \exp\left(-\frac{n}{\tau_1}\right)$$
$$\eta(n) = \eta_0 \cdot \exp\left(-\frac{n}{\tau_2}\right)$$

where τ_1 and τ_2 are called time constants

Two phases of training (cont.)

- **Convergence phase**. This phase fine-tunes the output neurons to match the input distribution
- For the convergence phase, $h_{j,i}(n)$ should contain just the nearest neighbors, which may reduce to one neuron. η should be small.

SOM with a trivial neighborhood reduces to competitive learning

• For the special case of a neighborhood function that includes just the winning neuron, SOM reduces to competitive learning:

$$\Delta \mathbf{w}_j = \eta y_j (\mathbf{x} - \mathbf{w}_j)$$

Here y_j is the (binary) response of neuron j (1 if it is the winner, 0 if not)

Competitive learning is online *K*-means

2D SOM on 2D data

CSE 5526: SOMs

1D SOM on 1D data

CSE 5526: SOMs

SOM illustrations (cont.)

CSE 5526: 501vis

SOM illustrations (cont.)

CSE 5526: SOMs

Elastic net for traveling salesman problem

Example: Islands of Music

Pampalk, Rauber, Merkl (2002)