CSE 5526: Introduction to Neural Networks

Review to date

Real neurons have three main parts

- Cell body (~50µm)
 - Initiates action potential
- Axon (0.2-20µm)
 - Transmits signal to up to 1000 other neurons
 - Insulated by myelin sheath
 - Up to 1m long
- Dendrites: receive signals
 - Synapse: junction to another neuron's axon

This model approximates the neural firing rate

McCulloch-Pitts neuron model

 $x_i \in \{-1, 1\}$ Bipolar input

$$\varphi(v) = \begin{cases} 1 & \text{if } v \ge 0 \\ -1 & \text{if } v < 0 \end{cases}$$
 A form of signum (sign) function

$$y = \varphi(\sum_{i=1}^{m} w_i x_i + b)$$

M-P neurons can implement any logic function

$$y = w_1 x_1 + w_2 x_2 + b$$

<i>x</i> ₁	<i>x</i> ₂	x_1 AND x_2	x_1 OR x_2	NOT x_1
-1	-1	-1	-1	1
-1	1	-1	1	1
1	-1	-1	1	-1
1	-1	1	1	-1

	x_1 AND x_2	x_1 OR x_2	NOT x_1
<i>w</i> ₁	1	1	-1
<i>W</i> ₂	1	1	0
b	-0.5	0.5	0

M-P neurons have a linear decision boundary

- Can we visualize the decision the perceptron would make in classifying every potential point?
- Yes, it is called the discriminant function

$$g(x) = x^T w = \sum_{i=0}^m w_i x_i$$

- What is the boundary between the two classes like? $g(x) = x^T w = 0$
- This is a linear function of *x*

M-P neurons have a linear decision boundary

Linear decision functions can't solve all classification problems

Not separable

Perceptron algorithm learns weights from data

- Learn parameters w from examples (x_{p}, d_{p})
- In an online fashion, i.e., one point at a time
- Adjust weights as necessary, i.e. when incorrect
- Adjust weights to be more like d=1 points and more like negative d=-1 points

Perceptron algorithm learns weights from data

$$w(n+1) = w(n) + \Delta w(n)$$

$$= w(n) + \eta [d(n) - y(n)] x(n)$$

- *n*: iteration number, iterating over points in turn
- η : step size or learning rate, = 1 WLOG
- Only updates w when y(n) is incorrect

Summary of perceptron learning algorithm

- Definition
 - *w*(*n*): (m+1)-by-1 weight vector (including bias) at step *n*
- Inputs
 - x(n): nth (m+1)-by-1 input vector with first element = 1
 - d(n): nth desired response
- Initialization: set w(0) = 0
- Repeat until no points are mis-classified
 - Compute response: $y(n) = \operatorname{signum}\{w(n)^T x(n)\}$
 - Update: w(n + 1) = w(n) + [d(n) y(n)]x(n)

Perceptron learning can be interpreted as gradient descent

• Consider the total amount by which a neuron mis-classifies all of the points

$$E(w) = -\sum_{p} (d_p - y_p) w^T x_p$$

• Then the gradient of this WRT *w* is

$$\nabla_{w}E(w) = -\sum_{p} (d_{p} - y_{p})x_{p}$$

• So the gradient descent update is $w(n+1) = w(n) - \eta \nabla_w E = w(n) + (d_p - y_p) x_p$

Perceptron convergence theorem

• Theorem:

• Assume that there exists some unit vector w_0 and some α such that $d(n)w_0^T x(n) \ge \alpha$

- i.e., the data are linearly separable

• Assume also that there exists some *R* such that $||x(n)|| = \sqrt{x(n)^T x(n)} \le R \quad \forall n$

- i.e., the data lie within a sphere of radius R

• Then the perceptron algorithm makes at most $\frac{R^2}{\alpha^2}$ errors

- i.e., it converges in at most
$$\frac{R^2}{\alpha^2}$$
 iterations

Perceptron convergence proof sketch

- Define w_k as the parameter vector when the algorithm makes its k^{th} error (note $w_1 = 0$)
- First show $k\alpha \leq ||w_{k+1}||$ by induction
 - The weight vector grows in length proportionally with k
 - because of the separability of the data
- Second show $||w_{k+1}||^2 \le kR^2$ by induction
 - But it can grow no faster than \sqrt{k}
 - because of the radius of the data
- Then it follows that $k \leq R^2/\alpha^2$
 - The perceptron makes a finite number of errors

The double-moon classification problem

Perceptron learns double-moon, d = 1Classification using perceptron with distance = 1, radius = 10, and width = 6

Perceptron does not learn double-moon, d = -4Classification using perceptron with distance = -4, radius = 10, and width = 6

Linear regression has a closed-form solution

- Predict desired output d_p
- As a linear function of observations, \boldsymbol{x}_p $y_p = \boldsymbol{w}^T \boldsymbol{x}_p$
- Find parameters **w** that minimize the mean square error of the predictions

$$E(\boldsymbol{w}) = \frac{1}{2} \sum_{p} \left(d_p - y_p \right)^2$$

- Set gradient of error WRT *w* to 0
 - Solve for *w* analytically

The mean square error defines a parabolic cost function

Optimal parameters can be found via search

- Often there is no closed form solution for $\nabla_{w} E(w) = 0$
- We can still use the gradient in a numerical solution
- This is called gradient descent $w(n+1) = w(n) - \eta \nabla_w E(w)$
- At the minimum of E(w), the gradient is 0
 - And **w** stays constant because w(n + 1) = w(n) 0

The gradient is the slope and direction of steepest ascent of the error function

Least squares classification works pretty well for double-moon, d = 1

Classification using least squares with dist = 1, radius = 10, and width = 6

Least squares classification works less well for double-moon, d = -4

Classification using least squares with dist = -4, radius = 10, and width = 6

LMS algorithm solves least squares on-line

- Stochastic gradient descent solution to linear regression is called the LMS algorithm
- Minimizes the error on one data point at a time $2E_p(w) = e_p^2(w) = (d_p - y_p)^2 = (d_p - w^T x_p)^2$
- The gradient is $\nabla_{\boldsymbol{w}} E_p(\boldsymbol{w}) = -(d_p - \boldsymbol{w}^T \boldsymbol{x}_p) \boldsymbol{x}_p = -e_p(\boldsymbol{w}) \boldsymbol{x}_p$
- So the LMS update is $w(n+1) = w(n) - \eta \nabla_w E_p(w)$ $= w(n) + \eta e_p(w) x_p$

LMS achieves the least squares solution for double-moon, d = 1

Classification using LMS with distance = 1, radius = 10, and width = 6

LMS achieves the least squares solution for double-moon, d=-4

Classification using LMS with distance = -4, radius = 10, and width = 6

The optimal learning rate for a parabola is the reciprocal of the second derivative

Multilayer perceptrons aren't really perceptrons

MLPs can be trained to minimize the MSE

• Think of an MLP as a complicated, non-linear function of its input parametrized by *w*:

$$\mathbf{y} = F(\mathbf{x}; \mathbf{w})$$

Given a set of training data {x_p, d_p}, adjust w to minimize the mean square error of its predictions

$$\overline{E}(\boldsymbol{w}) = \sum_{p} E_{p}(\boldsymbol{w}) = \sum_{p} \frac{1}{2} \|\boldsymbol{d}_{p} - F(\boldsymbol{x}_{p}; \boldsymbol{w})\|^{2}$$

Gradient descent in MLPs is called backprop $x_i = \frac{w_{ji} \quad v_j}{\varphi_j} \underbrace{\varphi_j}^{y_j \quad w_{kj} \quad v_k} \underbrace{\varphi_k}^{y_k} \underbrace{\varphi_k}^$

• Error assigned to each neuron

$$e_k = (d_k - y_k)$$
$$e_j = \sum_k e_k \varphi'(v_k) w_{kj}$$

• Gradients computed for each weight

$$\frac{\partial}{\partial w_{kj}} E(\mathbf{w}) = -e_k \varphi'(v_k) y_j$$
$$\frac{\partial}{\partial w_{ji}} E(\mathbf{w}) = -e_j \varphi'(v_j) x_i$$

Gradient descent in MLPs is called backprop $x_i \square \xrightarrow{w_{ji} \vee y_j} \varphi_j \xrightarrow{y_j \vee w_{kj} \vee y_k} \varphi_k \xrightarrow{y_k} \varphi_k$

- So the weights are updated as $w_{kj}(n+1) = w_{kj}(n) + \eta e_k \varphi'(v_k) y_j$ $w_{ji}(n+1) = w_{ji}(n) + \eta e_j \varphi'(v_j) x_i$
- Easy to extend to more layers
 - Although the gradient itself is less well behaved
 - So second-order methods are more necessary
Backprop can be visualized as a flow chart

Must set several parameters to build an MLP

- Model parameters
 - Number of hidden layers
 - Number of units in each hidden layer
 - Activation function
 - Error function
- It is best to compare different settings empirically

There are many optimization tricks for finding better local minima in backprop

- Momentum: mix in gradient from step n 1
- Weight initialization: small random values
- Stopping criterion: early stopping
- Learning rate annealing: start large, slowly shrink
- Second order methods: use a separate η for each pair of parameters based on local curvature
- Randomize training example order
- Regularization: terms in E(w) that only depend on w

MLP learns double-moon, d = -4

Classification using MLP with distance = -4, radius = 10, and width = 6

CSE 5526: Review

MLP learns double-moon, d = -5

Classification using MLP with distance = -5, radius = 10, and width = 6

CSE 5526: Review

Our goal is to train models that generalize

- Models must be complex enough to capture important variations in the training data
- But not so complex that they capture the random variations in the training data
- We evaluate generalization by measuring performance on a held-out test or validation set

Polynomial of order 0 cannot capture important variations

Polynomial of order 1 cannot capture important variations

Polynomial of order 3 can capture important variations

Polynomial of order 9 captures unimportant variations

Learning curves can tell you whether a model is too complex or too simple

Simple models under-fit complex models over-fit

	Under-fit	Good fit	Over-fit
Training error	High	Low	Low
Testing error	High	Low	High

Fit is relative to the amount of training data

• Polynomial of order 9 fit to 10 points

Fit is relative to the amount of training data

• Polynomial of order 9 fit to 15 points

Fit is relative to the amount of training data

• Polynomial of order 9 fit to 100 points

Simple networks are dominated by bias complex networks are dominated by variance

Function approximation

- Think of the MSE as a measure of goodness of fit for function approximation
- We have discussed several function approximators

Model	$y_p = f(x_p)$	
M-P Neuron	$y = \operatorname{signum}(\boldsymbol{w}^T \boldsymbol{x})$	
Linear regression	$y = w^T x$	
MLP	$y_{k} = \varphi \left(\sum_{j} w_{kj} \varphi \left(\sum_{i} w_{ji} x_{i} \right)_{j} \right)_{k}$	
RBF network	$y = \sum_{k} w_{k} \varphi \left(\ \boldsymbol{x} - \boldsymbol{\mu}_{k} \ \right)$	

Linear projection computes weights for bases

• It is possible to approximate a function f(x) by a linear combination of simpler functions

$$F(\boldsymbol{x}) = \sum_{j} w_{j} \varphi_{j}(\boldsymbol{x})$$

If w_j's can be chosen so that approximation error is arbitrarily small for any function f(x) over the domain of interest, then {φ_j} has the property of universal approximation, or {φ_j} is complete

Radial basis function networks are similar to MLPs in structure

RBF nets are trained in three steps

- To train
 - 1. Choose the Gaussian centers using *K*-means, etc.
 - 2. Determine the Gaussian widths as the variance of each cluster, or using d_{max}
 - 3. Determine the weights w_i using linear regression
- Select the number of bases using (cross-)validation

RBF learns double-moon, d = -5

RBF net learns double-moon, d = -6

Classification using RBF with distance = -6, radius = 10, and width = 6

