
1 CSE 5526: Review

CSE 5526: Introduction to Neural Networks

Review to date

2 CSE 5526: Review

Real neurons have three main parts

• Cell body (~50µm)
• Initiates action potential

• Axon (0.2-20µm)
• Transmits signal to up to 1000

other neurons
• Insulated by myelin sheath
• Up to 1m long

• Dendrites: receive signals
• Synapse: junction to another

neuron’s axon

3 CSE 5526: Review

This model approximates the neural firing rate

4 CSE 5526: Review

McCulloch-Pitts neuron model

}1,1{ −∈ix

)(
1

bxwy i

m

i
i += ∑

=

ϕ

0 if
0 if

1
1

)(
<
≥




−

=
v
v

vϕ A form of signum
(sign) function

Bipolar input

5 CSE 5526: Review

M-P neurons can implement any logic function

𝑥𝑥1

𝑥𝑥2

𝑦𝑦

𝑥𝑥1 𝑥𝑥2 𝑥𝑥1AND 𝑥𝑥2 𝑥𝑥1OR 𝑥𝑥2 NOT 𝑥𝑥1
-1 -1 -1 -1 1
-1 1 -1 1 1
1 -1 -1 1 -1
1 -1 1 1 -1

1

𝑤𝑤1

𝑤𝑤2

𝑏𝑏

Σ

𝑥𝑥1AND 𝑥𝑥2 𝑥𝑥1OR 𝑥𝑥2 NOT 𝑥𝑥1
𝑤𝑤1 1 1 -1
𝑤𝑤2 1 1 0
𝑏𝑏 -0.5 0.5 0

𝑦𝑦 = 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 + 𝑏𝑏

6 CSE 5526: Review

M-P neurons have a linear decision boundary

• Can we visualize the decision the perceptron would
make in classifying every potential point?

• Yes, it is called the discriminant function

𝑔𝑔 𝑥𝑥 = 𝑥𝑥𝑇𝑇𝑤𝑤 = �𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖

𝑚𝑚

𝑖𝑖=0

• What is the boundary between the two classes like?
𝑔𝑔 𝑥𝑥 = 𝑥𝑥𝑇𝑇𝑤𝑤 = 0

• This is a linear function of x

7 CSE 5526: Review

M-P neurons have a linear decision boundary

8 CSE 5526: Review

Linear decision functions
can’t solve all classification problems

Linearly separable Non-linearly separable

Not separable

Distinction depends on
“scale” of classifier

9 CSE 5526: Review

Perceptron algorithm learns weights from data

• Learn parameters w from examples (xp, dp)
• In an online fashion, i.e., one point at a time
• Adjust weights as necessary, i.e. when incorrect
• Adjust weights to be more like d=1 points and more

like negative d=-1 points

10 CSE 5526: Review

Perceptron algorithm learns weights from data

)()()1(nwnwnw ∆+=+

 n: iteration number, iterating over points in turn
 η: step size or learning rate, = 1 WLOG
 Only updates w when y(n) is incorrect

)()]()([)(nxnyndnw −+= η

11 CSE 5526: Review

Visualization of perceptron learning

From Bishop (2006)

12 CSE 5526: Review

Visualization of perceptron learning

From Bishop (2006)

13 CSE 5526: Review

Visualization of perceptron learning

From Bishop (2006)

14 CSE 5526: Review

Visualization of perceptron learning

From Bishop (2006)

15 CSE 5526: Review

Visualization of perceptron learning

From Bishop (2006)

16 CSE 5526: Review

Summary of perceptron learning algorithm

• Definition
• w(n): (m+1)-by-1 weight vector (including bias) at step n

• Inputs
• x(n): nth (m+1)-by-1 input vector with first element = 1
• d(n): nth desired response

• Initialization: set w(0) = 0
• Repeat until no points are mis-classified

• Compute response: 𝑦𝑦 𝑛𝑛 = signum 𝑤𝑤 𝑛𝑛 𝑇𝑇𝑥𝑥 𝑛𝑛
• Update: 𝑤𝑤 𝑛𝑛 + 1 = 𝑤𝑤 𝑛𝑛 + 𝑑𝑑 𝑛𝑛 − 𝑦𝑦 𝑛𝑛 𝑥𝑥(𝑛𝑛)

17 CSE 5526: Review

Perceptron learning can be interpreted
as gradient descent

• Consider the total amount by which a neuron
mis-classifies all of the points

𝐸𝐸 𝑤𝑤 = −� 𝑑𝑑𝑝𝑝 − 𝑦𝑦𝑝𝑝 𝑤𝑤𝑇𝑇𝑥𝑥𝑝𝑝
𝑝𝑝

• Then the gradient of this WRT 𝑤𝑤 is

𝛻𝛻𝑤𝑤𝐸𝐸 𝑤𝑤 = −� 𝑑𝑑𝑝𝑝 − 𝑦𝑦𝑝𝑝 𝑥𝑥𝑝𝑝
𝑝𝑝

• So the gradient descent update is
𝑤𝑤 𝑛𝑛 + 1 = 𝑤𝑤 𝑛𝑛 − 𝜂𝜂𝛻𝛻𝑤𝑤𝐸𝐸 = 𝑤𝑤 𝑛𝑛 + 𝑑𝑑𝑝𝑝 − 𝑦𝑦𝑝𝑝 𝑥𝑥𝑝𝑝

18 CSE 5526: Review

Perceptron convergence theorem

• Theorem:
• Assume that there exists some unit vector w0 and some α

such that 𝑑𝑑 𝑛𝑛 𝑤𝑤0𝑇𝑇𝑥𝑥 𝑛𝑛 ≥ 𝛼𝛼
– i.e., the data are linearly separable

• Assume also that there exists some R such that
𝑥𝑥 𝑛𝑛 = 𝑥𝑥 𝑛𝑛 𝑇𝑇𝑥𝑥 𝑛𝑛 ≤ 𝑅𝑅 ∀𝑛𝑛
– i.e., the data lie within a sphere of radius R

• Then the perceptron algorithm makes at most 𝑅𝑅
2

𝛼𝛼2
 errors

– i.e., it converges in at most 𝑅𝑅
2

𝛼𝛼2
 iterations

19 CSE 5526: Review

Perceptron convergence proof sketch

• Define 𝑤𝑤𝑘𝑘 as the parameter vector when the
algorithm makes its kth error (note 𝑤𝑤1 = 0)

• First show 𝑘𝑘𝛼𝛼 ≤ 𝑤𝑤𝑘𝑘+1 by induction
• The weight vector grows in length proportionally with 𝑘𝑘
• because of the separability of the data

• Second show 𝑤𝑤𝑘𝑘+1 2 ≤ 𝑘𝑘𝑅𝑅2 by induction
• But it can grow no faster than 𝑘𝑘
• because of the radius of the data

• Then it follows that 𝑘𝑘 ≤ 𝑅𝑅2/𝛼𝛼2
• The perceptron makes a finite number of errors

20 CSE 5526: Review

The double-moon classification problem

21 CSE 5526: Review

Perceptron learns double-moon, d = 1

22 CSE 5526: Review

Perceptron does not learn double-moon, d = -4

23 CSE 5526: Review

Linear regression has a closed-form solution

• Predict desired output 𝑑𝑑𝑝𝑝
• As a linear function of observations, 𝒙𝒙𝑝𝑝

𝑦𝑦𝑝𝑝 = 𝒘𝒘𝑇𝑇𝒙𝒙𝑝𝑝
• Find parameters 𝒘𝒘 that minimize the mean square

error of the predictions

𝐸𝐸 𝒘𝒘 =
1
2
� 𝑑𝑑𝑝𝑝 − 𝑦𝑦𝑝𝑝

2

𝑝𝑝

• Set gradient of error WRT 𝒘𝒘 to 0
• Solve for 𝒘𝒘 analytically

24 CSE 5526: Review

The mean square error
defines a parabolic cost function

w

E(w)

w*

Emin

w0

25 CSE 5526: Review

Optimal parameters can be found via search

• Often there is no closed form solution for
𝛻𝛻𝒘𝒘𝐸𝐸 𝒘𝒘 = 0

• We can still use the gradient in a numerical solution
• This is called gradient descent

𝒘𝒘 𝑛𝑛 + 1 = 𝒘𝒘 𝑛𝑛 − 𝜂𝜂𝛻𝛻𝒘𝒘𝐸𝐸 𝒘𝒘
• At the minimum of 𝐸𝐸 𝒘𝒘 , the gradient is 0

• And 𝒘𝒘 stays constant because 𝒘𝒘 𝑛𝑛 + 1 = 𝒘𝒘 𝑛𝑛 − 0

26 CSE 5526: Review

The gradient is the slope and direction of
steepest ascent of the error function

w

E(w)

w*

Emin



w0

Δw

w
wwEwwE

wE

w ∆
∆−−∆+

=

∇

→∆ 2
)()(lim

)(

00
0

0

Gradient

27 CSE 5526: Review

Least squares classification works pretty well
for double-moon, d = 1

28 CSE 5526: Review

Least squares classification works less well
for double-moon, d = -4

29 CSE 5526: Review

LMS algorithm solves least squares on-line

• Stochastic gradient descent solution to linear
regression is called the LMS algorithm

• Minimizes the error on one data point at a time
2𝐸𝐸𝑝𝑝 𝑤𝑤 = 𝑒𝑒𝑝𝑝2 𝒘𝒘 = 𝑑𝑑𝑝𝑝 − 𝑦𝑦𝑝𝑝

2 = 𝑑𝑑𝑝𝑝 − 𝒘𝒘𝑇𝑇𝒙𝒙𝑝𝑝
2

• The gradient is
𝛻𝛻𝒘𝒘𝐸𝐸𝑝𝑝 𝒘𝒘 = − 𝑑𝑑𝑝𝑝 − 𝒘𝒘𝑇𝑇𝒙𝒙𝑝𝑝 𝒙𝒙𝑝𝑝 = −𝑒𝑒𝑝𝑝 𝒘𝒘 𝒙𝒙𝑝𝑝

• So the LMS update is
𝒘𝒘 𝑛𝑛 + 1 = 𝒘𝒘 𝑛𝑛 − 𝜂𝜂𝛻𝛻𝒘𝒘𝐸𝐸𝑝𝑝 𝒘𝒘

= 𝒘𝒘 𝑛𝑛 + 𝜂𝜂𝑒𝑒𝑝𝑝 𝒘𝒘 𝒙𝒙𝑝𝑝

30 CSE 5526: Review

LMS achieves the least squares solution
for double-moon, d = 1

31 CSE 5526: Review

LMS achieves the least squares solution
for double-moon, d=-4

32 CSE 5526: Review

The optimal learning rate for a parabola
is the reciprocal of the second derivative

w

E(w)

w* w0

𝜂𝜂 < 𝐸𝐸′′ 𝑤𝑤 −1

w

E(w)

w* w0

𝜂𝜂 = 𝐸𝐸′′ 𝑤𝑤 −1

w

E(w)

w* w0

𝜂𝜂 > 2 𝐸𝐸′′ 𝑤𝑤 −1

w

E(w)

w* w0

𝜂𝜂 > 𝐸𝐸′′ 𝑤𝑤 −1

33 CSE 5526: Review

Multilayer perceptrons aren’t really perceptrons

34 CSE 5526: Review

MLPs can be trained to minimize the MSE

• Think of an MLP as a complicated, non-linear
function of its input parametrized by 𝒘𝒘:

𝐲𝐲 = 𝐹𝐹 𝒙𝒙;𝒘𝒘
• Given a set of training data 𝒙𝒙𝑝𝑝,𝒅𝒅𝑝𝑝 , adjust 𝒘𝒘 to

minimize the mean square error of its predictions

𝐸𝐸� 𝒘𝒘 = �𝐸𝐸𝑝𝑝 𝒘𝒘
𝑝𝑝

= �
1
2

𝒅𝒅𝑝𝑝 − 𝐹𝐹 𝒙𝒙𝑝𝑝;𝒘𝒘
2

𝑝𝑝

35 CSE 5526: Review

Gradient descent in MLPs is called backprop

• Error assigned to each neuron
𝑒𝑒𝑘𝑘 = 𝑑𝑑𝑘𝑘 − 𝑦𝑦𝑘𝑘

𝑒𝑒𝑗𝑗 = �𝑒𝑒𝑘𝑘𝜑𝜑𝜑(𝑣𝑣𝑘𝑘)𝑤𝑤𝑘𝑘𝑗𝑗
𝑘𝑘

• Gradients computed for each weight
𝜕𝜕

𝜕𝜕𝑤𝑤𝑘𝑘𝑗𝑗
𝐸𝐸 𝒘𝒘 = −𝑒𝑒𝑘𝑘𝜑𝜑′ 𝑣𝑣𝑘𝑘 𝑦𝑦𝑗𝑗

𝜕𝜕
𝜕𝜕𝑤𝑤𝑗𝑗𝑖𝑖

𝐸𝐸 𝒘𝒘 = −𝑒𝑒𝑗𝑗𝜑𝜑′ 𝑣𝑣𝑗𝑗 𝑥𝑥𝑖𝑖

𝜑𝜑𝑘𝑘
yj 𝜑𝜑𝑗𝑗 xi

wji wkj
yk vj vk E

36 CSE 5526: Review

Gradient descent in MLPs is called backprop

• So the weights are updated as
𝑤𝑤𝑘𝑘𝑗𝑗 𝑛𝑛 + 1 = 𝑤𝑤𝑘𝑘𝑗𝑗 𝑛𝑛 + 𝜂𝜂𝑒𝑒𝑘𝑘𝜑𝜑′ 𝑣𝑣𝑘𝑘 𝑦𝑦𝑗𝑗
𝑤𝑤𝑗𝑗𝑖𝑖 𝑛𝑛 + 1 = 𝑤𝑤𝑗𝑗𝑖𝑖 𝑛𝑛 + 𝜂𝜂𝑒𝑒𝑗𝑗𝜑𝜑′ 𝑣𝑣𝑗𝑗 𝑥𝑥𝑖𝑖

• Easy to extend to more layers
• Although the gradient itself is less well behaved
• So second-order methods are more necessary

𝜑𝜑𝑘𝑘
yj 𝜑𝜑𝑗𝑗 xi

wji wkj
yk vj vk E

37 CSE 5526: Review

Backprop can be visualized as a flow chart

38 CSE 5526: Review

Must set several parameters to build an MLP

• Model parameters
• Number of hidden layers
• Number of units in each hidden layer
• Activation function
• Error function

• It is best to compare different settings empirically

39 CSE 5526: Review

There are many optimization tricks
for finding better local minima in backprop

• Momentum: mix in gradient from step 𝑛𝑛 − 1
• Weight initialization: small random values
• Stopping criterion: early stopping
• Learning rate annealing: start large, slowly shrink
• Second order methods: use a separate 𝜂𝜂 for each

pair of parameters based on local curvature
• Randomize training example order
• Regularization: terms in E(w) that only depend on w

40 CSE 5526: Review

MLP learns double-moon, d = -4

41 CSE 5526: Review

MLP learns double-moon, d = -5

42 CSE 5526: Review

Our goal is to train models that generalize

• Models must be complex enough to capture
important variations in the training data

• But not so complex that they capture the random
variations in the training data

• We evaluate generalization by measuring
performance on a held-out test or validation set

43 CSE 5526: Review

Polynomial of order 0
cannot capture important variations

44 CSE 5526: Review

Polynomial of order 1
cannot capture important variations

45 CSE 5526: Review

Polynomial of order 3
can capture important variations

46 CSE 5526: Review

Polynomial of order 9
captures unimportant variations

47 CSE 5526: Review

Learning curves can tell you
whether a model is too complex or too simple

48 CSE 5526: Review

Under-fit Good fit Over-fit
Training error High Low Low
Testing error High Low High

Simple models under-fit
complex models over-fit

49 CSE 5526: Review

Fit is relative to the amount of training data

• Polynomial of order 9 fit to 10 points

50 CSE 5526: Review

Fit is relative to the amount of training data

• Polynomial of order 9 fit to 15 points

51 CSE 5526: Review

Fit is relative to the amount of training data

• Polynomial of order 9 fit to 100 points

52 CSE 5526: Review

Simple networks are dominated by bias
complex networks are dominated by variance

53 CSE 5526: Review

Function approximation

• Think of the MSE as a measure of goodness of fit
for function approximation

• We have discussed several function approximators

Model 𝒚𝒚𝒑𝒑 = 𝒇𝒇(𝒙𝒙𝒑𝒑)

M-P Neuron 𝑦𝑦 = signum 𝒘𝒘𝑇𝑇𝒙𝒙
Linear regression 𝑦𝑦 = 𝒘𝒘𝑇𝑇𝒙𝒙

MLP

𝑦𝑦𝑘𝑘 = 𝜑𝜑 �𝑤𝑤𝑘𝑘𝑗𝑗
𝑗𝑗

𝜑𝜑 �𝑤𝑤𝑗𝑗𝑖𝑖𝑥𝑥𝑖𝑖
𝑖𝑖 𝑗𝑗 𝑘𝑘

RBF network 𝑦𝑦 = �𝑤𝑤𝑘𝑘𝜑𝜑
𝑘𝑘

𝒙𝒙 − 𝝁𝝁𝑘𝑘

54 CSE 5526: Review

Linear projection computes weights for bases

• It is possible to approximate a function 𝑓𝑓(𝒙𝒙) by a
linear combination of simpler functions

𝐹𝐹 𝒙𝒙 = �𝑤𝑤𝑗𝑗𝜑𝜑𝑗𝑗(𝒙𝒙)
𝑗𝑗

• If wj’s can be chosen so that approximation error is
arbitrarily small for any function 𝑓𝑓(𝒙𝒙) over the
domain of interest, then {𝜑𝜑𝑗𝑗} has the property of
universal approximation, or {𝜑𝜑𝑗𝑗} is complete

55 CSE 5526: Review

Radial basis function networks
are similar to MLPs in structure

56 CSE 5526: Review

RBF nets are trained in three steps

• To train
1. Choose the Gaussian centers using K-means, etc.
2. Determine the Gaussian widths as the variance of each

cluster, or using 𝑑𝑑max
3. Determine the weights 𝑤𝑤𝑗𝑗 using linear regression

• Select the number of bases using (cross-)validation

57 CSE 5526: Review

RBF learns double-moon, d = -5

58 CSE 5526: Review

RBF net learns double-moon, d = -6

	CSE 5526: Introduction to Neural Networks
	Real neurons have three main parts
	This model approximates the neural firing rate
	McCulloch-Pitts neuron model
	M-P neurons can implement any logic function
	M-P neurons have a linear decision boundary
	M-P neurons have a linear decision boundary
	Linear decision functions �can’t solve all classification problems
	Perceptron algorithm learns weights from data
	Perceptron algorithm learns weights from data
	Visualization of perceptron learning
	Visualization of perceptron learning
	Visualization of perceptron learning
	Visualization of perceptron learning
	Visualization of perceptron learning
	Summary of perceptron learning algorithm
	Perceptron learning can be interpreted�as gradient descent
	Perceptron convergence theorem
	Perceptron convergence proof sketch
	The double-moon classification problem
	Perceptron learns double-moon, d = 1
	Perceptron does not learn double-moon, d = -4
	Linear regression has a closed-form solution
	The mean square error �defines a parabolic cost function
	Optimal parameters can be found via search
	The gradient is the slope and direction of steepest ascent of the error function
	Least squares classification works pretty well�for double-moon, d = 1
	Least squares classification works less well�for double-moon, d = -4
	LMS algorithm solves least squares on-line
	LMS achieves the least squares solution�for double-moon, d = 1
	LMS achieves the least squares solution�for double-moon, d=-4
	The optimal learning rate for a parabola �is the reciprocal of the second derivative
	Multilayer perceptrons aren’t really perceptrons
	MLPs can be trained to minimize the MSE
	Gradient descent in MLPs is called backprop
	Gradient descent in MLPs is called backprop
	Backprop can be visualized as a flow chart
	Must set several parameters to build an MLP
	There are many optimization tricks �for finding better local minima in backprop
	MLP learns double-moon, d = -4
	MLP learns double-moon, d = -5
	Our goal is to train models that generalize
	Polynomial of order 0 �cannot capture important variations
	Polynomial of order 1 �cannot capture important variations
	Polynomial of order 3 �can capture important variations
	Polynomial of order 9�captures unimportant variations
	Learning curves can tell you �whether a model is too complex or too simple
	Simple models under-fit�complex models over-fit
	Fit is relative to the amount of training data
	Fit is relative to the amount of training data
	Fit is relative to the amount of training data
	Simple networks are dominated by bias�complex networks are dominated by variance
	Function approximation
	Linear projection computes weights for bases
	Radial basis function networks �are similar to MLPs in structure
	RBF nets are trained in three steps
	RBF learns double-moon, d = -5
	RBF net learns double-moon, d = -6

