
1 CSE 5526: Review 

CSE 5526: Introduction to Neural Networks 

Review to date 
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Real neurons have three main parts 

• Cell body (~50µm) 
• Initiates action potential 

• Axon (0.2-20µm) 
• Transmits signal to up to 1000 

other neurons 
• Insulated by myelin sheath 
• Up to 1m long 

• Dendrites: receive signals 
• Synapse: junction to another 

neuron’s axon 
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This model approximates the neural firing rate 
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McCulloch-Pitts neuron model 
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M-P neurons can implement any logic function 

𝑥𝑥1 

𝑥𝑥2 

𝑦𝑦 

𝑥𝑥1 𝑥𝑥2 𝑥𝑥1AND 𝑥𝑥2 𝑥𝑥1OR 𝑥𝑥2 NOT 𝑥𝑥1 
-1 -1 -1 -1 1 
-1 1 -1 1 1 
1 -1 -1 1 -1 
1 -1 1 1 -1 

1 

𝑤𝑤1 

𝑤𝑤2 

𝑏𝑏 

Σ 

𝑥𝑥1AND 𝑥𝑥2 𝑥𝑥1OR 𝑥𝑥2 NOT 𝑥𝑥1 
𝑤𝑤1 1 1 -1 
𝑤𝑤2 1 1 0 
𝑏𝑏 -0.5 0.5 0 

𝑦𝑦 = 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 + 𝑏𝑏 
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M-P neurons have a linear decision boundary 

• Can we visualize the decision the perceptron would 
make in classifying every potential point? 

• Yes, it is called the discriminant function 

𝑔𝑔 𝑥𝑥 = 𝑥𝑥𝑇𝑇𝑤𝑤 = �𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖

𝑚𝑚

𝑖𝑖=0

 

• What is the boundary between the two classes like? 
𝑔𝑔 𝑥𝑥 = 𝑥𝑥𝑇𝑇𝑤𝑤 = 0 

• This is a linear function of x 
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M-P neurons have a linear decision boundary 
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Linear decision functions  
can’t solve all classification problems 

Linearly separable Non-linearly separable 

Not separable 

Distinction depends on  
“scale” of classifier 
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Perceptron algorithm learns weights from data 

• Learn parameters w from examples (xp, dp) 
• In an online fashion, i.e., one point at a time 
• Adjust weights as necessary, i.e. when incorrect 
• Adjust weights to be more like d=1 points and more 

like negative d=-1 points 
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Perceptron algorithm learns weights from data 

)()()1( nwnwnw ∆+=+

 n: iteration number, iterating over points in turn 
 η: step size or learning rate, = 1 WLOG 
 Only updates w when y(n) is incorrect 
 

)()]()([)( nxnyndnw −+= η
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Visualization of perceptron learning 

From Bishop (2006) 
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Visualization of perceptron learning 

From Bishop (2006) 
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Visualization of perceptron learning 
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Visualization of perceptron learning 

From Bishop (2006) 
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Visualization of perceptron learning 

From Bishop (2006) 
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Summary of perceptron learning algorithm 

• Definition 
• w(n): (m+1)-by-1 weight vector (including bias) at step n 

• Inputs 
• x(n): nth (m+1)-by-1 input vector with first element = 1 
• d(n): nth desired response 

• Initialization: set w(0) = 0 
• Repeat until no points are mis-classified 

• Compute response: 𝑦𝑦 𝑛𝑛 = signum 𝑤𝑤 𝑛𝑛 𝑇𝑇𝑥𝑥 𝑛𝑛   
• Update: 𝑤𝑤 𝑛𝑛 + 1 = 𝑤𝑤 𝑛𝑛 + 𝑑𝑑 𝑛𝑛 − 𝑦𝑦 𝑛𝑛 𝑥𝑥(𝑛𝑛) 
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Perceptron learning can be interpreted 
as gradient descent 

• Consider the total amount by which a neuron  
mis-classifies all of the points 

𝐸𝐸 𝑤𝑤 = −� 𝑑𝑑𝑝𝑝 − 𝑦𝑦𝑝𝑝 𝑤𝑤𝑇𝑇𝑥𝑥𝑝𝑝
𝑝𝑝

 

• Then the gradient of this WRT 𝑤𝑤 is 

𝛻𝛻𝑤𝑤𝐸𝐸 𝑤𝑤 = −� 𝑑𝑑𝑝𝑝 − 𝑦𝑦𝑝𝑝 𝑥𝑥𝑝𝑝
𝑝𝑝

 

• So the gradient descent update is 
𝑤𝑤 𝑛𝑛 + 1 = 𝑤𝑤 𝑛𝑛 − 𝜂𝜂𝛻𝛻𝑤𝑤𝐸𝐸 = 𝑤𝑤 𝑛𝑛 + 𝑑𝑑𝑝𝑝 − 𝑦𝑦𝑝𝑝 𝑥𝑥𝑝𝑝 
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Perceptron convergence theorem 

• Theorem:  
• Assume that there exists some unit vector w0 and some α 

such that 𝑑𝑑 𝑛𝑛 𝑤𝑤0𝑇𝑇𝑥𝑥 𝑛𝑛 ≥ 𝛼𝛼 
– i.e., the data are linearly separable 

• Assume also that there exists some R such that 
𝑥𝑥 𝑛𝑛 = 𝑥𝑥 𝑛𝑛 𝑇𝑇𝑥𝑥 𝑛𝑛 ≤ 𝑅𝑅    ∀𝑛𝑛 
– i.e., the data lie within a sphere of radius R 

• Then the perceptron algorithm makes at most 𝑅𝑅
2

𝛼𝛼2
 errors 

– i.e., it converges in at most 𝑅𝑅
2

𝛼𝛼2
 iterations 
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Perceptron convergence proof sketch 

• Define 𝑤𝑤𝑘𝑘 as the parameter vector when the 
algorithm makes its kth error (note 𝑤𝑤1 = 0) 

• First show 𝑘𝑘𝛼𝛼 ≤ 𝑤𝑤𝑘𝑘+1  by induction 
• The weight vector grows in length proportionally with 𝑘𝑘  
• because of the separability of the data 

• Second show 𝑤𝑤𝑘𝑘+1 2 ≤ 𝑘𝑘𝑅𝑅2 by induction 
• But it can grow no faster than 𝑘𝑘  
• because of the radius of the data 

• Then it follows that 𝑘𝑘 ≤ 𝑅𝑅2/𝛼𝛼2 
• The perceptron makes a finite number of errors 
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The double-moon classification problem 
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Perceptron learns double-moon, d = 1 
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Perceptron does not learn double-moon, d = -4 
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Linear regression has a closed-form solution 

• Predict desired output 𝑑𝑑𝑝𝑝  
• As a linear function of observations, 𝒙𝒙𝑝𝑝 

𝑦𝑦𝑝𝑝 = 𝒘𝒘𝑇𝑇𝒙𝒙𝑝𝑝 
• Find parameters 𝒘𝒘 that minimize the mean square 

error of the predictions 

𝐸𝐸 𝒘𝒘 =
1
2
� 𝑑𝑑𝑝𝑝 − 𝑦𝑦𝑝𝑝

2

𝑝𝑝

 

• Set gradient of error WRT 𝒘𝒘 to 0 
• Solve for 𝒘𝒘 analytically 
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The mean square error  
defines a parabolic cost function 

w 

E(w) 

w* 

Emin 

w0 
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Optimal parameters can be found via search 

• Often there is no closed form solution for 
𝛻𝛻𝒘𝒘𝐸𝐸 𝒘𝒘 = 0 

• We can still use the gradient in a numerical solution 
• This is called gradient descent 

𝒘𝒘 𝑛𝑛 + 1 = 𝒘𝒘 𝑛𝑛 − 𝜂𝜂𝛻𝛻𝒘𝒘𝐸𝐸 𝒘𝒘  
• At the minimum of 𝐸𝐸 𝒘𝒘 , the gradient is 0 

• And 𝒘𝒘 stays constant because 𝒘𝒘 𝑛𝑛 + 1 = 𝒘𝒘 𝑛𝑛 − 0 
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The gradient is the slope and direction of 
steepest ascent of the error function 
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Least squares classification works pretty well 
for double-moon, d = 1 
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Least squares classification works less well 
for double-moon, d = -4 
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LMS algorithm solves least squares on-line 

• Stochastic gradient descent solution to linear 
regression is called the LMS algorithm 

• Minimizes the error on one data point at a time 
2𝐸𝐸𝑝𝑝 𝑤𝑤 = 𝑒𝑒𝑝𝑝2 𝒘𝒘 = 𝑑𝑑𝑝𝑝 − 𝑦𝑦𝑝𝑝

2 = 𝑑𝑑𝑝𝑝 − 𝒘𝒘𝑇𝑇𝒙𝒙𝑝𝑝
2 

• The gradient is 
𝛻𝛻𝒘𝒘𝐸𝐸𝑝𝑝 𝒘𝒘 = − 𝑑𝑑𝑝𝑝 − 𝒘𝒘𝑇𝑇𝒙𝒙𝑝𝑝 𝒙𝒙𝑝𝑝 = −𝑒𝑒𝑝𝑝 𝒘𝒘 𝒙𝒙𝑝𝑝 

• So the LMS update is 
𝒘𝒘 𝑛𝑛 + 1 = 𝒘𝒘 𝑛𝑛 − 𝜂𝜂𝛻𝛻𝒘𝒘𝐸𝐸𝑝𝑝 𝒘𝒘

= 𝒘𝒘 𝑛𝑛 + 𝜂𝜂𝑒𝑒𝑝𝑝 𝒘𝒘 𝒙𝒙𝑝𝑝 
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LMS achieves the least squares solution 
for double-moon, d = 1 
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LMS achieves the least squares solution 
for double-moon, d=-4 
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The optimal learning rate for a parabola  
is the reciprocal of the second derivative 

w 

E(w) 

w* w0 

𝜂𝜂 < 𝐸𝐸′′ 𝑤𝑤 −1 

w 

E(w) 

w* w0 

𝜂𝜂 = 𝐸𝐸′′ 𝑤𝑤 −1 

w 

E(w) 

w* w0 

𝜂𝜂 > 2 𝐸𝐸′′ 𝑤𝑤 −1 

w 

E(w) 

w* w0 

𝜂𝜂 > 𝐸𝐸′′ 𝑤𝑤 −1 
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Multilayer perceptrons aren’t really perceptrons 
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MLPs can be trained to minimize the MSE 

• Think of an MLP as a complicated, non-linear 
function of its input parametrized by 𝒘𝒘:  

𝐲𝐲 = 𝐹𝐹 𝒙𝒙;𝒘𝒘  
• Given a set of training data 𝒙𝒙𝑝𝑝,𝒅𝒅𝑝𝑝 , adjust 𝒘𝒘 to 

minimize the mean square error of its predictions  

𝐸𝐸� 𝒘𝒘 = �𝐸𝐸𝑝𝑝 𝒘𝒘
𝑝𝑝

= �
1
2

𝒅𝒅𝑝𝑝 − 𝐹𝐹 𝒙𝒙𝑝𝑝;𝒘𝒘
2

𝑝𝑝
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Gradient descent in MLPs is called backprop 

• Error assigned to each neuron 
𝑒𝑒𝑘𝑘 = 𝑑𝑑𝑘𝑘 − 𝑦𝑦𝑘𝑘  

𝑒𝑒𝑗𝑗 = �𝑒𝑒𝑘𝑘𝜑𝜑𝜑(𝑣𝑣𝑘𝑘)𝑤𝑤𝑘𝑘𝑗𝑗
𝑘𝑘

 

• Gradients computed for each weight 
𝜕𝜕

𝜕𝜕𝑤𝑤𝑘𝑘𝑗𝑗
𝐸𝐸 𝒘𝒘 = −𝑒𝑒𝑘𝑘𝜑𝜑′ 𝑣𝑣𝑘𝑘 𝑦𝑦𝑗𝑗 

𝜕𝜕
𝜕𝜕𝑤𝑤𝑗𝑗𝑖𝑖

𝐸𝐸 𝒘𝒘 = −𝑒𝑒𝑗𝑗𝜑𝜑′ 𝑣𝑣𝑗𝑗 𝑥𝑥𝑖𝑖 

 

𝜑𝜑𝑘𝑘  
yj 𝜑𝜑𝑗𝑗  xi 

wji wkj 
yk vj vk E 
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Gradient descent in MLPs is called backprop 

• So the weights are updated as 
𝑤𝑤𝑘𝑘𝑗𝑗 𝑛𝑛 + 1 = 𝑤𝑤𝑘𝑘𝑗𝑗 𝑛𝑛 + 𝜂𝜂𝑒𝑒𝑘𝑘𝜑𝜑′ 𝑣𝑣𝑘𝑘 𝑦𝑦𝑗𝑗 
𝑤𝑤𝑗𝑗𝑖𝑖 𝑛𝑛 + 1 = 𝑤𝑤𝑗𝑗𝑖𝑖 𝑛𝑛 + 𝜂𝜂𝑒𝑒𝑗𝑗𝜑𝜑′ 𝑣𝑣𝑗𝑗 𝑥𝑥𝑖𝑖 

• Easy to extend to more layers 
• Although the gradient itself is less well behaved 
• So second-order methods are more necessary 

𝜑𝜑𝑘𝑘  
yj 𝜑𝜑𝑗𝑗  xi 

wji wkj 
yk vj vk E 
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Backprop can be visualized as a flow chart 



38 CSE 5526: Review 

Must set several parameters to build an MLP 

• Model parameters 
• Number of hidden layers 
• Number of units in each hidden layer 
• Activation function 
• Error function 

• It is best to compare different settings empirically 
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There are many optimization tricks  
for finding better local minima in backprop 

• Momentum: mix in gradient from step 𝑛𝑛 − 1 
• Weight initialization: small random values 
• Stopping criterion: early stopping 
• Learning rate annealing: start large, slowly shrink 
• Second order methods: use a separate 𝜂𝜂 for each 

pair of parameters based on local curvature 
• Randomize training example order 
• Regularization: terms in E(w) that only depend on w 



40 CSE 5526: Review 

MLP learns double-moon, d = -4 
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MLP learns double-moon, d = -5 
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Our goal is to train models that generalize 

• Models must be complex enough to capture 
important variations in the training data 

• But not so complex that they capture the random 
variations in the training data 

• We evaluate generalization by measuring 
performance on a held-out test or validation set 
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Polynomial of order 0  
cannot capture important variations 
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Polynomial of order 1  
cannot capture important variations 
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Polynomial of order 3  
can capture important variations 
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Polynomial of order 9 
captures unimportant variations 
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Learning curves can tell you  
whether a model is too complex or too simple 
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Under-fit Good fit Over-fit 
Training error High Low Low 
Testing error High Low High 

Simple models under-fit 
complex models over-fit 
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Fit is relative to the amount of training data 

• Polynomial of order 9 fit to 10 points 
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Fit is relative to the amount of training data 

• Polynomial of order 9 fit to 15 points 
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Fit is relative to the amount of training data 

• Polynomial of order 9 fit to 100 points 
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Simple networks are dominated by bias 
complex networks are dominated by variance 
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Function approximation 

• Think of the MSE as a measure of goodness of fit 
for function approximation 

• We have discussed several function approximators 
 
 

Model 𝒚𝒚𝒑𝒑 = 𝒇𝒇(𝒙𝒙𝒑𝒑) 

M-P Neuron 𝑦𝑦 = signum 𝒘𝒘𝑇𝑇𝒙𝒙  
Linear regression 𝑦𝑦 = 𝒘𝒘𝑇𝑇𝒙𝒙 

MLP 

 

𝑦𝑦𝑘𝑘 = 𝜑𝜑 �𝑤𝑤𝑘𝑘𝑗𝑗
𝑗𝑗

𝜑𝜑 �𝑤𝑤𝑗𝑗𝑖𝑖𝑥𝑥𝑖𝑖
𝑖𝑖 𝑗𝑗 𝑘𝑘

  

RBF network 𝑦𝑦 = �𝑤𝑤𝑘𝑘𝜑𝜑
𝑘𝑘

𝒙𝒙 − 𝝁𝝁𝑘𝑘  
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Linear projection computes weights for bases 

• It is possible to approximate a function 𝑓𝑓(𝒙𝒙) by a 
linear combination of simpler functions 

𝐹𝐹 𝒙𝒙 = �𝑤𝑤𝑗𝑗𝜑𝜑𝑗𝑗(𝒙𝒙)
𝑗𝑗

 

• If wj’s can be chosen so that approximation error is 
arbitrarily small for any function 𝑓𝑓(𝒙𝒙) over the 
domain of interest, then {𝜑𝜑𝑗𝑗}  has the property of 
universal approximation, or {𝜑𝜑𝑗𝑗} is complete 
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Radial basis function networks  
are similar to MLPs in structure 
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RBF nets are trained in three steps 

• To train 
1. Choose the Gaussian centers using K-means, etc. 
2. Determine the Gaussian widths as the variance of each 

cluster, or using 𝑑𝑑max 
3. Determine the weights 𝑤𝑤𝑗𝑗 using linear regression 

• Select the number of bases using (cross-)validation 
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RBF learns double-moon, d = -5 
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RBF net learns double-moon, d = -6 
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