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Function approximation 

• We have been using MLPs as pattern classifiers 
• But in general, they are function approximators 

• Depending on output layer nonlinearity 
• And error function being minimized 

• As a function approximator, MLPs are nonlinear, 
semiparametric, and universal 
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Function approximation 

• Radial basis function (RBF) networks are similar 
function approximators 

• Also nonlinear, semiparametric, universal 
• Can also be visualized as layered network of nodes 
• Easier to train than MLPs 

• Do not require backpropagation 
• But do not necessarily find an optimal solution 
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RBF net illustration 
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Function approximation background 

• Before getting into RBF networks, let’s discuss 
approximating scalar functions of a single variable 

• Weierstrass approximation theorem: any continuous 
real function in an interval can be approximated 
arbitrarily well by a set of polynomials 

• Taylor expansion approximates any differentiable 
function by a polynomial in the neighborhood 
around a point 

• Fourier series gives a way of approximating any 
periodic function by a sum of sines and cosines 
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Linear projection 

• Approximate function f (x) by a linear combination 
of simpler functions 
 

 
• If wj’s can be chosen so that approximation error is 

arbitrarily small for any function f (x) over the 
domain of interest, then {𝜑𝜑𝑗𝑗}  has the property of 
universal approximation, or {𝜑𝜑𝑗𝑗} is complete 

𝐹𝐹 𝐱𝐱 = �𝑤𝑤𝑗𝑗𝜑𝜑𝑗𝑗(𝐱𝐱)
𝑗𝑗
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Example incomplete basis: sinc 

sinc(𝑥𝑥) = sin(𝜋𝜋𝑥𝑥)
𝜋𝜋𝜋𝜋

  𝜑𝜑𝑗𝑗 𝑥𝑥 = sinc(𝑥𝑥 − 𝜇𝜇𝑗𝑗) 

• Can approximate any smooth function 
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Example orthogonal complete basis: sinusoids 

𝜑𝜑2𝑛𝑛 𝑥𝑥 = sin 2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋  
𝜑𝜑2𝑛𝑛+1 𝑥𝑥 = cos 2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋  

Complete on the interval [0,1] 
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Example orthogonal complete basis:  
Chebyshev polynomials 

𝑇𝑇0 𝑥𝑥 = 1      𝑇𝑇1 𝑥𝑥 = 𝑥𝑥     𝑇𝑇𝑛𝑛+1 𝑥𝑥 = 2𝑥𝑥𝑇𝑇𝑛𝑛 𝑥𝑥 − 𝑇𝑇𝑛𝑛−1 𝑥𝑥  
Complete on the interval [0,1] 

𝑇𝑇2 𝑥𝑥 = 2𝑥𝑥2 − 1 
𝑇𝑇3 𝑥𝑥 = 4𝑥𝑥3 − 3𝑥𝑥 

etc. 
 

"Chebyshev Polynomials of the 1st 
Kind (n=0-5, x=(-1,1))" by 
Inductiveload - Own work. Licensed 
under Public domain via Wikimedia 
Commons - 
http://commons.wikimedia.org/wiki/Fil
e:Chebyshev_Polynomials_of_the_1st
_Kind_(n%3D0-5,_x%3D(-1,1)).svg 
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Radial basis functions 

• A radial basis function (RBF) is a basis function of 
the form 𝜑𝜑𝑗𝑗 𝒙𝒙 = 𝜑𝜑 𝒙𝒙 − 𝝁𝝁𝑗𝑗  
• Where 𝜑𝜑 𝑟𝑟  is positive w/monotonic derivative for 𝑟𝑟 > 0 

• Consider a Gaussian RBF 

𝜑𝜑𝑗𝑗 𝐱𝐱 = exp −
1

2𝜎𝜎2
𝐱𝐱 −  𝐱𝐱𝑗𝑗

2 = 𝐺𝐺 𝒙𝒙 − 𝒙𝒙𝑗𝑗  

• A local basis function, falling off from the center 
 
 
 

G(||x-xj||) 

xj 
x 

1 
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Radial basis functions (cont.) 

• Thus approximation by Gaussian RBF becomes 

𝐹𝐹(𝐱𝐱)=�𝑤𝑤𝑗𝑗G(||𝐱𝐱−𝐱𝐱𝑗𝑗||)
𝑗𝑗

  

• Gaussians are universal approximators  
• I.e., they form a complete basis 
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RBF net illustration 
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Remarks (cont.) 

• Other RBFs exist, but we won’t be using them 
• Multiquadrics 

𝜑𝜑 𝑥𝑥 = 𝑥𝑥2 + 𝑐𝑐2 
• Inverse multiquadrics 

𝜑𝜑 𝑥𝑥 =
1

𝑥𝑥2 + 𝑐𝑐2
 

• Micchelli’s theorem (1986) 
• Let {𝒙𝒙𝑖𝑖} be a set of 𝑁𝑁 distinct points, 𝜑𝜑(⋅) be an RBF 
• Then the matrix 𝜙𝜙𝑖𝑖𝑖𝑖 = 𝜑𝜑 𝒙𝒙𝑖𝑖 − 𝒙𝒙𝑗𝑗  is non-singular 
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Four questions to answer for RBF nets 

• If we want to use Gaussian RBFs to approximate a 
function specified by training data 
1. How do we choose the Gaussian centers? 
2. How do we determine the Gaussian widths? 
3. How do we determine the weights 𝑤𝑤𝑗𝑗? 
4. How do we select the number of bases? 
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1. How do we choose the Gaussian centers? 

• Easy way: select K data points at random 
• Potentially better way: unsupervised clustering, e.g. 

using the K-means algorithm 
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K-means algorithm 

• Goal: Divide N input patterns into K clusters with 
minimum total variance 

• In other words, partition patterns into K clusters 𝐶𝐶𝑗𝑗 
to minimize the following cost function 

𝐽𝐽=�� ||𝐱𝐱𝑖𝑖−𝐮𝐮𝑗𝑗||2
𝑖𝑖∈𝐶𝐶𝑗𝑗

𝐾𝐾

𝑗𝑗=1

 

where 𝐮𝐮𝑗𝑗 = 1
||𝐶𝐶𝑗𝑗||

∑ 𝐱𝐱𝑖𝑖𝑖𝑖∈𝐶𝐶𝑗𝑗  is the mean (center) of cluster j 
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K-means algorithm 

1. Choose a set of K cluster centers randomly from 
the input patterns 

2. Assign the N input patterns to the K clusters using 
the squared Euclidean distance rule: 
𝐱𝐱 is assigned to 𝐶𝐶𝑗𝑗 if ||𝐱𝐱−𝐮𝐮𝑗𝑗||2 ≤ ||𝐱𝐱−𝐮𝐮𝑖𝑖||2 for all 𝑖𝑖 ≠ 𝑗𝑗 

3. Update cluster centers 

𝐮𝐮𝑗𝑗 =
1

|𝐶𝐶𝑗𝑗|
�𝐱𝐱𝑖𝑖
𝑖𝑖∈𝐶𝐶𝑗𝑗

 

4. If any cluster center changes, go to step 2; else stop 
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K-means illustration 

From Bishop (2006) 
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K-means illustration 

From Bishop (2006) 
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K-means illustration 

From Bishop (2006) 
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K-means illustration 

From Bishop (2006) 
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K-means illustration 

From Bishop (2006) 
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K-means illustration 

From Bishop (2006) 
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K-means illustration 

From Bishop (2006) 
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K-means illustration 

From Bishop (2006) 
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K-means illustration 

From Bishop (2006) 
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K-means cost function 

From Bishop (2006) 
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K-means algorithm remarks 

• The K-means algorithm always converges, but only 
to a local minimum 
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2. How to determine the Gaussian widths? 

• Once cluster centers are determined, the variance 
within each cluster can be set to  

σ  𝑗𝑗2  =
1

|𝐶𝐶𝑗𝑗|
� ||𝐮𝐮𝑗𝑗 − 𝐱𝐱𝑖𝑖||2
𝑖𝑖∈𝐶𝐶𝑗𝑗

 

 
• Remark: to simplify the RBF net design, all clusters can 

assume the same Gaussian width: 

σ=
𝑑𝑑max
2𝐾𝐾

 

 where dmax is the maximum distance between the K cluster centers 
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3. How do we determine the weights 𝑤𝑤𝑗𝑗? 

• With the hidden layer decided, weight training can 
be treated as a linear regression problem  

𝚽𝚽𝒘𝒘 = 𝒅𝒅 
• Can solve using the LMS algorithm 
• The textbook discusses recursive least squares 

(RLS) solutions 
• Can also solve in one shot using the pseudo-inverse 

𝒘𝒘 = 𝚽𝚽+𝒅𝒅 = 𝚽𝚽T𝚽𝚽 −1𝚽𝚽𝑇𝑇𝒅𝒅 
• Note that a bias term needs to be included in 𝚽𝚽 
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4. How do we select the number of bases? 

• The same problem as that of selecting the size of an 
MLP for classification 

• The short answer: (cross-)validation 
• The long answer: by balancing bias and variance 
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Bias and variance 

• Bias: training error 
• Difference between desired output and actual output for a 

particular training sample 
• Variance: generalization error 

• difference between the learned function from a particular 
training sample and the function derived from all training 
samples 

• Two extreme cases: zero bias and zero variance 
• A good-sized model is one where both bias and 

variance are low 
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RBF net training summary 

• To train 
1. Choose the Gaussian centers using K-means, etc. 
2. Determine the Gaussian widths as the variance of each 

cluster, or using 𝑑𝑑max 
3. Determine the weights 𝑤𝑤𝑗𝑗 using linear regression 

• Select the number of bases using (cross-)validation 
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RBF net illustration 
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Comparison between RBF net and MLP 

• For RBF nets, bases are local, while for MLP, 
“bases” are global 

• Generally, more bases are needed for an RBF net 
than hidden units for an MLP 

• Training is more efficient for RBF nets 
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XOR problem, again 

• RBF nets can 
also be applied 
to pattern 
classification 
problems 
• XOR problem 

revisited 

 
           Let 

𝜑𝜑1 𝑥𝑥 = exp − 𝑥𝑥 − 𝑡𝑡1 2  
𝜑𝜑2 𝑥𝑥 = exp(− 𝑥𝑥 − 𝑡𝑡2 2) 

 
          Where 

𝑡𝑡1 = 1,1 𝑇𝑇 
𝑡𝑡2 = 0,0 𝑇𝑇 
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XOR problem (cont.) 
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XOR problem, again 

• RBF nets can 
also be applied 
to pattern 
classification 
problems 
• XOR problem 

revisited 
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RBF net on double moon data, d = -5 
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RBF net on double moon data, d = -5 
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RBF net on double moon data, d = -6 
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RBF net on double moon data, d = -6 
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