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CSE 5526: Introduction to Neural Networks 

Multilayer Perceptrons 
(MLPs) 
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Motivation 

• Multilayer networks are more powerful than single-
layer nets 
• Example: XOR problem 
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Power of nonlinearity 

• For linear neurons, a multilayer net is equivalent to 
a single-layer net. This is not the case for nonlinear 
neurons 
• Why? 
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MLP architecture 
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Multi-layer perceptron 

• Think of an MLP as a complicated, non-linear 
function of its input parametrized by 𝒘𝒘:  

𝐲𝐲 = 𝐹𝐹 𝒙𝒙;𝒘𝒘  
• Note that “Multi-layer perceptron” is a bit of a 

misnomer because they use a continuous activation 
function 
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MLP Training 

• Given a set of training data 𝒙𝒙𝑝𝑝,𝒅𝒅𝑝𝑝  can we adjust 
𝒘𝒘 so that the network is optimal? 

• Optimal with respect to what criterion? 
• Must define error criterion btwn 𝒚𝒚𝑝𝑝 = 𝐹𝐹(𝒙𝒙𝑝𝑝;𝒘𝒘) and 𝒅𝒅𝑝𝑝 
• We will use the mean square error for now, but others are 

possible (and often preferable) 

• Goal find 𝒘𝒘 that minimizes  

𝐸𝐸� 𝒘𝒘 = �𝐸𝐸𝑝𝑝 𝒘𝒘
𝑝𝑝

= �
1
2

𝒅𝒅𝑝𝑝 − 𝐹𝐹 𝒙𝒙𝑝𝑝;𝒘𝒘
2

𝑝𝑝
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Backpropagation 

• Because 𝐸𝐸�(𝒘𝒘) is still a complication non-linear 
function, we will optimize it using gradient descent 

• Because of the structure of MLPs, we can compute 
the gradient of 𝐸𝐸𝑝𝑝(𝒘𝒘) very efficiently using the 
backpropagation algorithm 

• Backpropagation computes the gradient of each 
layer recursively based on subsequent layers 

• Because this is 𝐸𝐸𝑝𝑝(𝒘𝒘) and not 𝐸𝐸�(𝒘𝒘), we will be 
using stochastic gradient descent 
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Notation 

• Notation for one hidden layer (drop p for now) 
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Notation 

• Notation for one hidden layer (drop p for now) 
 
 

 

  𝑦𝑦𝑘𝑘 = 𝜑𝜑 ∑ 𝑤𝑤𝑘𝑘𝑘𝑘𝑗𝑗 𝜑𝜑 ∑ 𝑤𝑤𝑗𝑗𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖 𝑗𝑗 𝑘𝑘
  

𝐸𝐸(𝒘𝒘) =
1
2
� 𝑑𝑑𝑘𝑘 − 𝑦𝑦𝑘𝑘 2

𝑘𝑘

 

• Keep in mind during the derivation: 
• How would changing 𝐸𝐸𝑝𝑝(𝒘𝒘) affect the derivation? 
• How would changing 𝜑𝜑 𝒗𝒗  affect the derivation? 
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Backprop 

𝐸𝐸 𝒘𝒘 =
1
2
� 𝑑𝑑𝑘𝑘 − 𝑦𝑦𝑘𝑘 2

𝑘𝑘

 

=
1
2
� 𝑑𝑑𝑘𝑘 − 𝜑𝜑 � 𝑤𝑤𝑘𝑘𝑘𝑘𝑦𝑦𝑗𝑗

𝑗𝑗 𝑘𝑘

2

𝑘𝑘

 

 
• Then, to adjust the hidden-output weights 

𝜕𝜕
𝜕𝜕𝑤𝑤𝑘𝑘𝑘𝑘

𝐸𝐸 𝒘𝒘 =
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𝜕𝜕𝑦𝑦𝑘𝑘

𝜕𝜕𝑦𝑦𝑘𝑘
𝜕𝜕𝑣𝑣𝑘𝑘

𝜕𝜕𝑣𝑣𝑘𝑘
𝜕𝜕𝑤𝑤𝑘𝑘𝑘𝑘
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Backprop 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦𝑘𝑘

= − 𝑑𝑑𝑘𝑘 − 𝑦𝑦𝑘𝑘 = −𝑒𝑒𝑘𝑘 

𝜕𝜕𝑦𝑦𝑘𝑘
𝜕𝜕𝑣𝑣𝑘𝑘

=
𝜕𝜕
𝜕𝜕𝑣𝑣𝑘𝑘

𝜑𝜑 𝑣𝑣𝑘𝑘 = 𝜑𝜑′ 𝑣𝑣𝑘𝑘  

𝜕𝜕𝑣𝑣𝑘𝑘
𝜕𝜕w𝑘𝑘𝑘𝑘

= 𝑦𝑦𝑗𝑗 

So 
𝜕𝜕

𝜕𝜕𝑤𝑤𝑘𝑘𝑘𝑘
𝐸𝐸 𝒘𝒘 =

𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦𝑘𝑘

𝜕𝜕𝑦𝑦𝑘𝑘
𝜕𝜕𝑣𝑣𝑘𝑘

𝜕𝜕𝑣𝑣𝑘𝑘
𝜕𝜕𝑤𝑤𝑘𝑘𝑘𝑘

= −𝑒𝑒𝑘𝑘𝜑𝜑′ 𝑣𝑣𝑘𝑘 𝑦𝑦𝑗𝑗 

𝜑𝜑𝑘𝑘  
yj 𝜑𝜑𝑗𝑗  xi 

wji wkj 
yk vj vk E 
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Backprop 

• Hence, to update the hidden-output weights 
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Backprop 

• For the input-hidden weights, 
𝜕𝜕

𝜕𝜕𝑤𝑤𝑗𝑗𝑗𝑗
𝐸𝐸 𝒘𝒘 =

𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦𝑗𝑗

𝜕𝜕𝑦𝑦𝑗𝑗
𝜕𝜕𝑣𝑣𝑗𝑗

𝜕𝜕𝑣𝑣𝑗𝑗
𝜕𝜕𝑤𝑤𝑗𝑗𝑗𝑗

 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦𝑗𝑗

=
𝜕𝜕
𝜕𝜕𝑦𝑦𝑗𝑗

1
2
� 𝑑𝑑𝑘𝑘 − 𝜑𝜑 � 𝑤𝑤𝑘𝑘𝑘𝑘𝑦𝑦𝑗𝑗

𝑗𝑗 𝑘𝑘

2

𝑘𝑘

 
 

= −� 𝑑𝑑𝑘𝑘 − 𝑦𝑦𝑘𝑘 𝜑𝜑′ 𝑣𝑣𝑘𝑘 𝑤𝑤𝑘𝑘𝑘𝑘
𝑘𝑘

 

  𝜕𝜕𝑦𝑦𝑗𝑗
𝜕𝜕𝑣𝑣𝑗𝑗

= 𝜑𝜑′ 𝑣𝑣𝑗𝑗  
𝜕𝜕𝑣𝑣𝑗𝑗
𝜕𝜕𝑤𝑤𝑗𝑗𝑗𝑗

= 𝑥𝑥𝑖𝑖 
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Backprop 

• So 
𝜕𝜕

𝜕𝜕𝑤𝑤𝑗𝑗𝑗𝑗
𝐸𝐸 𝒘𝒘 =

𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦𝑗𝑗

𝜕𝜕𝑦𝑦𝑗𝑗
𝜕𝜕𝑣𝑣𝑗𝑗

𝜕𝜕𝑣𝑣𝑗𝑗
𝜕𝜕𝑤𝑤𝑗𝑗𝑗𝑗

 

= −� 𝑑𝑑𝑘𝑘 − 𝑦𝑦𝑘𝑘 𝜑𝜑′ 𝑣𝑣𝑘𝑘 𝑤𝑤𝑘𝑘𝑘𝑘𝜑𝜑′ 𝑣𝑣𝑗𝑗 𝑥𝑥𝑖𝑖
𝑘𝑘

 

= − �𝛿𝛿𝑘𝑘𝑤𝑤𝑘𝑘𝑘𝑘
𝑘𝑘

𝜑𝜑′ 𝑣𝑣𝑗𝑗 𝑥𝑥𝑖𝑖 

 
= −𝑒𝑒𝑗𝑗𝜑𝜑′ 𝑣𝑣𝑗𝑗 𝑥𝑥𝑖𝑖 
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Backprop 

• Hence, to update the input-hidden weights 
 
 
 
 
 
 

• The above is called the generalized δ rule  
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Backprop 

• Illustration of the generalized δ rule, 
 
 
 
 
 
• The generalized δ rule gives a solution to the credit 

(blame) assignment problem 
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Hyperbolic tangent function 
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Backprop 

• For the logistic sigmoid activation, we have 
 
 
• hence 
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Backprop 

In summary: 
𝜕𝜕

𝜕𝜕𝑤𝑤𝑘𝑘𝑘𝑘
𝐸𝐸 𝒘𝒘 = −𝑒𝑒𝑘𝑘𝜑𝜑′ 𝑣𝑣𝑘𝑘 𝑦𝑦𝑗𝑗 

𝜕𝜕
𝜕𝜕𝑤𝑤𝑗𝑗𝑗𝑗

𝐸𝐸 𝒘𝒘 = −𝑒𝑒𝑗𝑗𝜑𝜑′ 𝑣𝑣𝑗𝑗 𝑥𝑥𝑖𝑖 

• Backprop learning is local, concerning 
“presynaptic” and “postsynaptic” neurons only  

• How would changing 𝐸𝐸(𝒘𝒘) affect the derivation? 
• How would changing 𝜑𝜑 𝒗𝒗  affect the derivation? 
 

𝜑𝜑𝑘𝑘  
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Backprop illustration 
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Backprop 

• Extension to more hidden layers is straightforward. 
In general we have 
 
 
• The δ rule applies to the output layer and the generalized 

δ rule applies to hidden layers, layer by layer from the 
output end.  

• The entire procedure is called backpropagation (error is 
back propagated from the outputs to the inputs) 

 

ijji ynw ηδ=∆ )(
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MLP design parameters 

• Several parameters to choose when designing an 
MLP (best to evaluate empirically) 

• Number of hidden layers 
• Number of units in each hidden layer 
• Activation function 
• Error function 
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Universal approximation theorem 

• MLPs can learn to approximate any function, given 
sufficient layers and neurons (an existence proof) 

• At most two hidden layers are sufficient to 
approximate any function. One hidden layer is 
sufficient for any continuous function 
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Optimization tricks 

• For a given network, local minima of the cost 
function are possible 

• Many tricks exist to try to find better local minima 
• Momentum: mix in gradient from step 𝑛𝑛 − 1 
• Weight initialization: small random values 
• Stopping criterion: early stopping 
• Learning rate annealing: start with large 𝜂𝜂, slowly shrink 
• Second order methods: use a separate 𝜂𝜂 for each 

parameter or pair of parameters based on local curvature 
• Randomization of training example order 
• Regularization, i.e., terms in E(w) that only depend on w 
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Learning rate control: momentum 

• To ease oscillating weights due to large η, some 
inertia (momentum) of weight update is added 
 

 
• In the downhill situation,  

 
– thus accelerating learning by a factor of 1/(1 ‒ α) 

• In the oscillating situation, it smooths weight change, 
thus stabilizing oscillations 
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Weight initialization 

• To prevent saturating neurons and break symmetry 
that can stall learning, initial weights (including 
biases) are typically randomized to produce zero 
mean and activation potentials away from saturation 
parts of the activation function 
• For the hyperbolic tangent activation function, avoiding 

saturation can be achieved by initializing weights so that 
the variance equals the reciprocal of the number of 
weights of a neuron 
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Stopping criterion 

• One could stop after a predetermined number of epochs or 
when the MSE decrease is below a given criterion 

• Early stopping with cross validation: keep part of the 
training set, called validation subset, as a test for 
generalization performance 
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Selecting model parameters: (cross-)validation 

• Must have separate training, validation, and test 
datasets to avoid over-confidence, over-fitting 

• When lots of data is available, have dedicated sets 
• When data is scarce, use cross-validation 

• Divide the entire training sample into an estimation 
subset and a validation subset (e.g. 80/20 split) 

• Rotate through 80/20 splits so that every point is tested 
on once 
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Cross validation illustration 
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MLP applications 

• Task: Handwritten zipcode recognition (1989) 
• Network description 

• Input: binary pixels for each digit 
• Output: 10 digits 
• Architecture: 4 layers (16x16–12x8x8–12x4x4–30–10) 

• Each feature detector encodes only one feature 
within a local input region. Different detectors in 
the same module respond to the same feature at 
different locations through weight sharing. Such a 
layout is called a convolutional net 
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Zipcode recognizer architecture 
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Zipcode recognition (cont.) 

• Performance: trained on 7300 digits and tested on 
2000 new ones 
• Achieved 1% error on the training set and 5% error on 

the test set 
• If allowing rejection (no decision), 1% error on the test 

set 
• The task is not easy (see a handwriting example) 

• Remark: constraining network design is a way of 
incorporating prior knowledge about a specific 
problem  
• Backprop applies whether or not the network is 

constrained 
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Letter recognition example 

• The convolutional net has been subsequently 
applied to a number of pattern recognition tasks 
with state-of-the-art results 
• Handwritten letter recognition 
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Automatic driving 

• ALVINN (automatic land vehicle in a neural network) 
 
 
 
 
 

 
• One hidden layer, one output layer 
• Five hidden nodes, 32 output nodes (steer left – steer right) 
• 960 inputs (30 x 32 image intensity array) 
• 5000 trainable weights 

• Later success of Stanley (won $2M DARPA Grand 
Challenge in 2005) 
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Other MLP applications 

• NETtalk, a speech synthesizer 
• GloveTalk, which converts hand gestures to speech 
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