CSE 5526: Introduction to Neural Networks

Multilayer Perceptrons
(MLPSs)
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Motivation

* Multilayer networks are more powerful than single-
layer nets

* Example: XOR problem
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Power of nonlinearity

* For linear neurons, a multilayer net is equivalent to
a single-layer net. This is not the case for nonlinear
neurons

* Why?
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MLP architecture
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Multi-layer perceptron

* Think of an MLP as a complicated, non-linear
function of its input parametrized by w:
y = F(x; w)
* Note that “Multi-layer perceptron” is a bit of a

misnomer because they use a continuous activation
function
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MLP Training

* Given a set of training data {x,, d,,} can we adjust
w so that the network Is optimal?
* Optimal with respect to what criterion?
* Must define error criterion btwn y,, = F(x,;w) and d,,

* We will use the mean square error for now, but others are
possible (and often preferable)

* Goal find w that minimizes
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Backpropagation

* Because E(w) is still a complication non-linear
function, we will optimize it using gradient descent

* Because of the structure of MLPs, we can compute
the gradient of E,(w) very efficiently using the

backpropagation algorithm

* Backpropagation computes the gradient of each
layer recursively based on subsequent layers

* Because this is E,(w) and not E (w), we will be
using stochastic gradient descent

CSE 5526: MLPs



Notation

* Notation for one hidden layer (drop p for now)

CSE 5526: MLPs



Notation

* Notation for one hidden layer (drop p for now)
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* Keep In mind during the derivation:
* How would changing E, (w) affect the derivation?
* How would changing ¢ (v) affect the derivation?
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Backprop
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* Then, to adjust the hidden-output weights
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Backprop
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Backprop
ot gy M !

* Hence, to update the hidden-output welghts
ok

ij (n +1) ij (n) Um
K]
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5/(

=W, (N) +76, Y, (5 rule)
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Backprop

X; o' f\y‘ Wy
* For the input-hidden weights,
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Backprop
X: O Wi ﬂyj M ©
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Backprop
ot gy M !

* Hence, to update the input-hidden welghts

ok
le(n+1) le (n) UWJI
= Wj; (n)+ n§j¢;(vj)xi
5]

:wji(n)+775jxi

* The above Is called the generalized ¢ rule
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Backprop
X o f\yj Wig ¥

* [llustration of the generalized o rule,

* The generalized o rule gives a solution to the credit
(blame) assignment problem
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Hyperbolic tangent function

¢(v)

@ =17159 | ==nmommmm e

k| TR
|

=14 U

1.0

i s P10

—————————————————————— —a = —1.7159

CSE 5526: MLPs



Backprop
ot gy !

* For the logistic sigmoid activation, we have

o'(v) =ap(V)[1-o(v)]

* hence

5k = € [aYk (l_ Yk )]
=ay, [1-y]ld, -yl
5j — ayj[l_ yj]Zij5k
K

CSE 5526: MLPs 18



Backprop
o gy M !

In summary:

E = —
5ij (w) €k

E(w) = —ejcp’(vj)xi

aWji
* Backprop learning is local, concerning
“presynaptic” and “postsynaptic” neurons only
* How would changing E (w) affect the derivation?

* How would changing ¢ (v) affect the derivation?
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Backprop illustration
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Backprop

* Extension to more hidden layers is straightforward.
In general we have

AWji (n) = 7751' Y

* The & rule applies to the output layer and the generalized

o rule applies to hidden layers, layer by layer from the
output end.

* The entire procedure is called backpropagation (error is
back propagated from the outputs to the inputs)
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MLP design parameters

* Several parameters to choose when designing an
MLP (best to evaluate empirically)

* Number of hidden layers

* Number of units in each hidden layer
* Activation function

* Error function
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Universal approximation theorem

* MLPs can learn to approximate any function, given
sufficient layers and neurons (an existence proof)

* At most two hidden layers are sufficient to
approximate any function. One hidden layer iIs
sufficient for any continuous function
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Optimization tricks

* For a given network, local minima of the cost
function are possible

* Many tricks exist to try to find better local minima

Momentum: mix in gradient from stepn — 1

Weight initialization: small random values

Stopping criterion: early stopping

Learning rate annealing: start with large n, slowly shrink

Second order methods: use a separate n for each
parameter or pair of parameters based on local curvature

Randomization of training example order
Regularization, I.e., terms in E(w) that only depend on w
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Learning rate control: momentum

* To ease oscillating weights due to large n, some
Inertia (momentum) of weight update is added

Aw;, (N) =nod.y, + aAw,; (n-1), O<ax<l
* In the downhill situation, ~ Aw;;(n) z1L5j Y,
-

— thus accelerating learning by a factor of 1/(1 — )

* |n the oscillating situation, it smooths weight change,
thus stabilizing oscillations
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Weight initialization

* To prevent saturating neurons and break symmetry
that can stall learning, initial weights (including
biases) are typically randomized to produce zero
mean and activation potentials away from saturation
parts of the activation function

* For the hyperbolic tangent activation function, avoiding
saturation can be achieved by initializing weights so that
the variance equals the reciprocal of the number of
weights of a neuron
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Stopping criterion

* One could stop after a predetermined number of epochs or
when the MSE decrease is below a given criterion

* Early stopping with cross validation: keep part of the
training set, called validation subset, as a test for
generallzatlon performance
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Selecting model parameters: (cross-)validation

* Must have separate training, validation, and test
datasets to avoid over-confidence, over-fitting

* \When lots of data iIs available, have dedicated sets

* \When data IS scarce, use cross-validation

* Divide the entire training sample into an estimation
subset and a validation subset (e.g. 80/20 split)

* Rotate through 80/20 splits so that every point is tested
on once
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Cross validation tllustration

Trial 1

Trial 2
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MLP applications

* Task: Handwritten zipcode recognition (1989)

* Network description
* |Input: binary pixels for each digit
e Qutput: 10 digits
* Architecture: 4 layers (16x16-12x8x8-12x4x4-30-10)
* Each feature detector encodes only one feature
within a local input region. Different detectors In
the same module respond to the same feature at
different locations through weight sharing. Such a
layout is called a convolutional net
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Zipcode recognizer architecture

10 output units

30 units

12 feature
detectors
(4 by 4)

12 feature

detectors

(8 by 8)

16 by 16 input
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Zipcode recognition (cont.)

* Performance: trained on 7300 digits and tested on
2000 new ones

* Achieved 1% error on the training set and 5% error on
the test set

* |f allowing rejection (no decision), 1% error on the test
set

* The task is not easy (see a handwriting example)

* Remark: constraining network design is a way of
Incorporating prior knowledge about a specific
problem

* Backprop applies whether or not the network is

constrained
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Letter recognition example

* The convolutional net has been subsequently
applied to a number of pattern recognition tasks
with state-of-the-art results

* Handwritten letter recognition

INPUT Feature maps Feature maps Feature maps Feature maps OUTPUT
28 X 28 4@24 X 24 4@12 X 12 12@8 X 8 12@4 X 4 26@1 X 1
- |
2?- &£ =
L= 06 C = .
OOI» N &‘9/) oof.- | LP‘%, oof.‘
% 2y, % 2y, %
Q/}‘ /;0 &é‘ 40 0{}.
O‘,> @ OO © 00
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Automatic driving

* ALVINN (automatic land vehicle in a neural network)

One hidden layer, one output layer

* Five hidden nodes, 32 output nodes (steer left — steer right)
960 inputs (30 x 32 image intensity array)

5000 trainable weights

* Later success of Stanley (won $2M DARPA Grand
Challenge in 2005)
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Other MLP applications

* NETtalk, a speech synthesizer
* GloveTalk, which converts hand gestures to speech
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