CSE 5526: Introduction to Neural Networks

Regression and
the LMS Algorithm
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Linear regression with one variable

* Given a set of N pairs of data {x;, d;}, approximate d by a
linear function of x (regressor)

& d~wx+Db
or di =Y +& =p(wx; +b) + ¢
=WX; + b+ ¢,

where the activation function ¢(x) = x is a linear function,
corresponding to a linear neuron. y is the output of the neuron, and

& =0;-Y,
Is called the regression (expectational) error
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Linear regression (cont.)

* The problem of regression with one variable is how to
choose w and b to minimize the regression error

* The least squares method aims to minimize the square error:

Ze Z<d —y,)?

=1
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Linear regression (cont.)

* To minimize the two-variable square function, set
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Linear regression (cont.)

—:—Z—(d —Wx, —b)?
=—Z(di—WXi—b)=0

8E i i(di_WXi_b)2
w2

:—Z(di —wx. —b)x. =0
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Analytic solution approaches

* Solve one equation for b in terms of w
* Substitute into other equation, solve for w
* Substitute solution for w back into equation for b

* Setup system of equations in matrix notation
* Solve matrix equation

* Rewrite problem in matrix form
* Compute matrix gradient
* Solve for w
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Linear regression (cont.)

N 020502 )

N> (% —X)°
Z(Xi - X)(d; —d)
Z(Xi - X)*?

where an overbar (i.e. X) indicates the mean

Derive yourself!

W =

CSE 5526: Regression 8



Linear regression in matrix notation

° LetX = [xq1 x3 X3 ... Xy]

T

* Then the model predictions are y = Xw

* And the mean sg

uare error can be written

E(w)=|d-y

> =lld — Xw||*

* To find the optimal w, set the gradient of the error
with respect to w equal to 0 and solve for w

9 —n—9 1q_ 2
awE(W)_O_aw”d Xw||

* See The Matrix Cookbook (Petersen & Pedersen)
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Linear regression in matrix notation

9 _ 9 q_ 2
° awE(W) = aw”d Xw||

= 9 (d— Xw)''(d — Xw)

¢y
= %de — ZWTXTd + WTXTXW
= —2X'd — 2X"Xw

* “E(W)=0=-2X"d - 2X"Xw
>w=X"X)"X"d
* Much cleaner!
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Finding optimal parameters via search

Often there is no closed form solution for iE(w) =0

ow

* \We can still use the gradient in a numerical solution
We will still use the same example to permit comparison
* For simplicity’s sake, setb =0

(W) =2 (d ~wx,)

E(w) is called a cost function
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Cost function

E(w)

min

W W,

« Question: how can we update w from w, to minimize E?
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Gradient and directional derivatives

* Consider a two-variable function f(x, y). Its gradient at the
point (X, Yo)' Is defined as

of (x,y) of (x,y) !

Vi = ,
OX oy

X:XO
Y=Yo

= 1, (Xo’ YO)UX T fy(XO’ yO)uy

where u, and u, are unit vectors in the x and y directions, and
f, =of Jox and f, =of /oy
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Gradient and directional derivatives (cont.)

* Atany given direction, u = au, + bu,, with va’ +b? =1, the
directional derivative at (X, yo)T along the unit vector u is

D, . (X, ¥o) = lim T (% +hay, +hhb)— f (X5, Yo)

_ i LT (%o +ha, y, +hb) — T (xg, Yo + )]+ [T (%o, Yo +10) — T (X, Yo)]

h—0 h
=af, (X, ¥o) + bfy(XO’ Yo)
:Vf(xo’ YO)TU

* Which direction has the greatest slope? The gradient because of the
dot product!
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Gradient and directional derivatives (cont.)

* Example: f(x,y) = %xz — 3xy + gyz + 2x + 2y
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Gradient and directional derivatives (cont.)

* Example: f(x,y) = ;xz — 3xy + gyz + 2x + 2y

"

g
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Gradient and directional derivatives (cont.)

* The level curves of a function f(x, y) are curves such that
flx,y) =k

* Thus, the directional derivative along a level curve i1s 0

D, =Vf(x,,y,) u=0

* And the gradient vector is perpendicular to the level curve
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Gradient and directional derivatives (cont.)

* The gradient of a cost function is a vector with the
dimension of w that points to the direction of maximum E
Increase and with a magnitude equal to the slope of the
tangent of the cost function along that direction

* Can the slope be negative?
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Gradient tllustration

E(w)

VE(w,)
im E(w, + Aw) — E(w, — Aw)

AW—0 2 AW

min

wWr W,

—— > Gradient
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Gradient descent

* Minimize the cost function via gradient (steepest) descent —
a case of hill-climbing

w(n+1) =w(n)—-nVE(n)

n: iteration number
n. learning rate

*See previous figure
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Gradient descent (cont.)

* For the mean-square-error cost function and linear neurons

E(n) = —62 (n) = —[0| (n) - y(n)I*
= E[d (n) —w(n)x(n)I*

OE 1 0e*(n)
ow(n) 2 ow(n)
=—e(n)x(n)

VE(n) =
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Gradient descent (cont.)

* Hence
w(n +1) =w(n)+ne(n)x(n)
=w(n)+nld(n)—y(n)]x(n)

* This is the least-mean-square (LMS) algorithm, or the Widrow-Hoff
rule
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Stochastic gradient descent

* |f the cost function is of the form
Ew) = ) Eyw)
* Then one gradient descen; step requires computing
Aw = —E(W) = 2 G_E (w)

* Which means computing E(w) or its gradient for
every data point

* Many steps may be required to reach an optimum
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Stochastic gradient descent

* |t is generally much more computationally efficient

to use
nitnp—1

9
Aw = z B (W)

n=n;
* For small values of n,,

* This update rule may converge in many fewer
passes through the data (epochs)
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Stochastic gradient descent example
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Stochastic gradient descent error functions
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Stochastic gradient descent animation
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Gradient descent animation
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Multi-variable LMS

* The analysis for the one-variable case extends to the multi-
variable case

E(n) = %[d (n)—w" (n)x(n)]?

OE OE  OE
oW, oW, oW,

where w,= b (bias) and x, = 1, as done for perceptron learning

VE(W) =
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Multi-variable LMS (cont.)
* The LMS algorithm
w(n+1)=w(n)—nVE(n)

=w(n) +nre(n)x(n)
=w(n)+#[d(n)—y(n)x(n)

CSE 5526: Regression

31



LMS algorithm remarks

* The LMS rule is exactly the same equation as the
perceptron learning rule

* Perceptron learning is for nonlinear (M-P) neurons,
whereas LMS learning is for linear neurons.

* l.e., perceptron learning is for classification and LMS is
for function approximation

* |LMS should be less sensitive to noise in the input
data than perceptrons

* On the other hand, LMS learning converges slowly

* Newton’s method changes weights in the direction
of the minimum E(w) and leads to fast convergence.

* But it is not online and is computationally expensive
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Stability of adaptation

When 7 is too small,
learning converges slowly

When # is too large, learning
doesn’t converge
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Learning rate annealing

* Basic idea: start with a large rate but gradually decrease it
* Stochastic approximation

n(n) ==
N

C IS a positive parameter
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Learning rate annealing (cont.)

e Search-then-converge

n(n) =

1+ (n /7)
11, and 7 are positive parameters

*When n is small compared to z, learning rate is approximately constant

*When n is large compared to 7, learning rule schedule roughly follows
stochastic approximation
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Rate annealing illustration
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Nonlinear neurons

* To extend the LMS algorithm to nonlinear neurons, consider
differentiable activation function ¢ at iteration n

E(n) = %[d (n) - y()T°

d(n)—¢ ijxj(n)

1
2
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Nonlinear neurons (cont.)

* By chain rule of differentiation

OE OE oy ov
OW; Oy OV OW,

J

=—[d(n) - y(n)]p'(v(n))x; (n)
= —e(n)go’(v(n))xj (n)
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Nonlinear neurons (cont.)

* Gradient descent gives
w, (n+1) = w; (n) +ne(n)e' (v(n))x; (n)
=W, (n)+no(n)x;(n)

* The above is called the delta (o) rule
* |f we choose a logistic sigmoid for ¢

1
1+ exp(—av)

o(V) =

then
P ’(V) — a(D(V) [1 — (D(V)] (see textbook)
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Role of activation function
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o Therole of " weight update is most sensitive when v is near zero
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